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Introduction: Quantum Convolutional Neural Networks (QCNN) [1] have seen widespread use in Quantum
Machine Learning as they posses desirable features such as requiring shallow circuits and not exhibiting barren
plateaus [2]. In particular, these models have been extremely successful for classifying phases of matter [3–7]. In
this work we argue that most tasks making use of a QCNN can be solved without the need to run a variational
circuit on a quantum computer. That is, we provide theoretical and numerical evidence that if a QCNN can
solve a given task, then there exists an efficient classical algorithm that can also solve the problem efficiently.
These results are based on two key observations: (1) When randomly initialized QCNNs can only “see” their
input state locally; and (2) The tasks for which QCNNs have shown heuristic success, allow for a solution (e.g.
classification tasks) via local measurements. Our results further strengthen the connection between absence of
barren plateaus and classical simulability presented in [8].

QCNN simulability: Consider the following question: Why do QCNNs not have barren plateaus when
randomly initialized? To understand its answer, let us begin by recalling that a QCNN is composed of alternat-
ing layers of convolutional and pooling layers. During a convolutional layer two-qubit gates act on neighboring
qubits in a brick-like fashion, while in a pooling layer half of the qubits are traced out. At the end of the QCNN,
one measures the expectation value of some local observable. Let U(θ) denote the unitary that implements a
QCNN and O the operator that we measure. Then, our first result is as follows:

Result 1 (Informal). Consider the adjoint action of the QCNN over the measurement, then Eθ[U
†(θ)OU(θ)] ≃∑

j cjPj, where Pj is a Pauli of bodyness |Pj | (i.e., acting non-trivially on |Pj | qubits) and where cj ∈ O(1/b|Pj |)
(for some b > 1) are coefficients that decrease exponentially with the bodyness of the Pauli.

Result 1 shows that randomly initialized QCNNs essentially only have support on local operators, i.e., high-
bodyness operators have exponentially small contributions and hence do not really see the initial state during
the beginning of the training (see Fig. 1). Clearly, this realization on its own does not say much as the optimal
classifying measurement U †(θ∗)OU(θ∗) (where θ∗ denotes the optimal set of parameters) could be a global
operator, as is expected in most of the cases for phases of matter classification [9]. However, by revisiting
several results in the literature, we argue that the following result generally holds.

Result 2 (Informal). For most classification tasks in the literature there exists sets of optimal parameters θ∗

such that U †(θ∗)OU(θ∗) has support on local observables, and the model achieves large classification accuracy.

They key implication of Result 2 is that the QCNN should be classically simulable as we only need to
simulate its action on the subspace of local operators. Importantly, such classical simulation still needs a
quantum computer as we need to perform classical shadows [10–12] on the quantum data. Critically, these
shadows are used to approximate the action of the QCNN on its initial states. More formally, we argue that
for tasks where QCNN work, then the algorithms is simulable in CSIMQE [8]. For convenience, we recall that a
problem C is in CSIMQE if a polynomial-time classical algorithm, which can utilize data obtained from quantum
devices in an initial data acquisition phase (also in polynomial time), can compute every instance in C.

Numerical results: To showcase our claim, we classically simulate the action of a QCNN via tensor
networks for the task of classify between the 2 phases of the bond-alternating XXX Heisenberg model defined
by H = J1

∑
i even

SiSi+1+J2
∑

i odd
SiSi+1. The ground states are characterized by a trivial phase and a topologically
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Figure 1: We show the distribution of k-purities (p(k)O =∑
j / |Pj |=k |cj |

2) for a QCNN acting on n = 1264 qubits
(blue), with convolutional layer gates sampled i.i.d from
G = U(4). We also present the number of Paulis Nk =
3k

(
n
k

)
acting on k-qubits (orange). The inset depicts the

quotient p
(k)
O /Nk, which tells us the average weight cj of a

Pauli with bodyness k.

Figure 2: Classification accuracy for a tensor network
simulation of a QCNN trained for varying number of data
points, and classical shadows taken from each point. We
note that the preliminary results shown here corresponds
to n = 6 qubits, but these will be scaled up for the final
poster and for the pre-print.

protected phase (function of the ratio J1/J2). We consider a model of 6 qubits (to be extended) and employ a
dataset of 500 samples, with equal distribution of both species. Given that the order parameter of this model
is local, we expect that a solution can be reached by biasing the tensor network to explore only local operators.

In Fig 2 we show the test accuracy as a function of the 2 parameters defining the computational cost of
the data acquisition: number of training points and number of shadows. This plot reveals important features
in the training process such as the increase of accuracy as the number of shadows increases, and the slight
dependence of the accuracy on the number of training points per phase, proving no overhead in the number of
realizations of the quantum circuit using shadow tomography. This trend reflects the expected locality in the
classification task involving one trivial phase. The simulated QCNN is able to classify the quantum samples by
only making use of local information provided by classical shadows, with no need to rerun an actual quantum
circuit for the training stage. The number of shadows needed is comparable to the number of shots employed
during each optimization step in standard training processes, but realized only once in the data acquisition
stage. We leave further room for significant performance improvement since fine-tuning a system of 10 qubits
provides an accuracy above 95% for just 200 shadows and 40 training points.

Implications and Future Directions: At a fundamental level, our work shows that QCNNs do not need
to be run on a quantum device for the tasks where they have shown heuristic success [13–21]. These results,
however, are extremely positive from a resource perspective, as training a model based on tomographic data
(such as classical shadows) without running on-chip any variational algorithm with expensive optimization
loops results in major savings in terms of quantum resources. Moving forward, we intend to show that both
standard QCNNs run on a quantum device, as well as their classical-shadows-based surrogates, should fail for
classification tasks requiring global operators [22, 23]. To illustrate this limitation, we will consider the problem
of distinguishing between two topological phases. This results will ultimately prove that: (1) If the task is easy
and the QCNN works, then it can be classically simulated, and replaced by a surrogate; and (2) If the task is
hard, then the QCNN will fail and this model should be avoided.
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