Equivalence between operator spreading and information propagation

Cheng Shang ^{1,*}, Hayato Kinkawa ¹, and Tomotaka Kuwahara ^{2,3,†}

¹Department of Physics, The University of Tokyo

²Analytical quantum complexity RIKEN Hakubi Research Team, RQC

- ³PRESTO, Japan Science and Technology
- *cheng.shang@riken.jp; [†]tomotaka.kuwahara@riken.jp

Introduction

Operator spreading and the Lieb-Robinson bound

Information propagation as operator spreading

 $C_{\chi}(t) \propto \left| \mathsf{Tr}_{\mathsf{B}} \left\{ O_{\mathsf{B}} \left[\rho_{\mathsf{B}}(t) - \rho_{\mathsf{B}}'(t) \right] \right\} \right| \leq \sup_{\|O_{\mathsf{B}}\|=1} \|O_{\mathsf{B}}(t), \tau_{\mathsf{A}}\|_{1} \leq \varepsilon$

Simple example:

Encoding: $\{p_0, I_A\}$ and $\{1 - p_0, \tau_A\}$, where I_A and τ_A represent identity and unitary operation to A, respectively. Unitary evolution: $U_{AB}(t) = \mathcal{T} \exp \left| -i \int_{0}^{t} H_{AB}(\tau) d\tau \right|$ with any Hamiltonian H_{AB} . We have

Figure 1: $\varepsilon = \exp[-\text{const}(d_{AB} - v_{LR}t)]$, the Lieb-Robinson bound gives an upper bound on operator spreading, where v_{LR} is called Lieb-Robinson velocity^[1].

Information propagation and the Holevo capacity

Figure 2: $C_{\chi}(t)$, the Holevo capacity quantifies the maximum amount of a quantum channel to transmit classical information^[2].

 $\rho_{B}(t) = \operatorname{Tr}_{A} \left| U_{AB}(t) I_{A} \rho_{AB}(0) I_{A} U_{AB}^{\dagger}(t) \right|,$ $\rho_{\mathsf{B}}'(t) = \mathsf{Tr}_{\mathsf{A}} \left[U_{\mathsf{A}\mathsf{B}}(t) \tau_{\mathsf{A}} \rho_{\mathsf{A}\mathsf{B}}(0) \tau_{\mathsf{A}}^{\dagger} U_{\mathsf{A}\mathsf{B}}^{\dagger}(t) \right],$

the reduced density matrices $\rho_{\rm B}(t)$ and $\rho'_{\rm B}(t)$ correspond to $I_{\rm A}$ and $\tau_{\rm A}$.

Finding tight constraints on the classical capacity of quantum channels 1. $C_{\chi} \propto T$? The trace distance between stationary states ho_B and ho_B' can be written as $T(\rho_{B}, \rho'_{B}) := 0.5 \|\rho_{B} - \rho'_{B}\|_{1}$. 2. $C_{\chi}(t) \propto \varepsilon$? Case of $\rho_{B}(t)$ and $\rho'_{B}(t)$ change over time. 3. How to estimate the classical communication rate, $dC_{\chi}(t)/dt$? References: [1] E. H. Lieb and D. W. Robinson, 1972. [2] A. Holevo, 1973.

Setup and main results

Our Setup

Entanglement capacity

Theorem 3. Entanglement capacity, $dC_{\chi}(t)/dt$ **?**

We prove that it is captured by the small-incremental-entangling theorem as

Figure 3: Ancilla-assisted entangling model.

Purification: start from a pure state ρ_{AB} , where $a \cup A = A$ and $b \cup B = B$. Encoding: define \mathcal{E} by a set of CPTP maps acting on \mathcal{A} , $\{p_i, \rho_i = \tau_{\mathcal{A},i} (\rho_{\mathcal{A}\mathcal{B}})\}$. A noiseless channel σ_t : $U_{AB}(t) = I_a \otimes \exp(iH_{AB}t) \otimes I_b$. we have $\rho_{\mathcal{B}}^{i} = \operatorname{tr}_{\mathcal{A}} \left[\sigma_{t} \circ \tau_{\mathcal{A},i} \left(\rho_{\mathcal{A}\mathcal{B}} \right) \right] = \operatorname{tr}_{\mathcal{A}} \left[U_{\mathcal{A}\mathcal{B}} \left(t \right) \tau_{\mathcal{A},i} \left(\rho_{\mathcal{A}\mathcal{B}} \right) U_{\mathcal{A}\mathcal{B}}^{\dagger} \left(t \right) \right].$

Theorem 0. No operator spreading \Leftrightarrow zero information propagation

 $C_{\chi}(t) = \sum_{i} p_{i} S\left[\rho_{\mathcal{B}}^{i}(t) || \rho_{\mathcal{B}}(t) = p_{i} \rho_{\mathcal{B}}^{i}(t)\right],$

for $\forall i, \rho_B^i(t) = \rho_B(t) \Leftrightarrow C_{\chi}(t) = 0.$

Theorem 1. $C_{\chi} \propto T(\rho_{\mathcal{B}}^{i}, \overline{\rho_{\mathcal{B}}^{i}})$?

Using Holevo skew divergence and defining the complementary states $\overline{\rho_{\mathcal{B}}}$, the

 $|dC_{\gamma}(t)/dt| \leq 2\Gamma_t = 2O(1) ||H_{AB}|| \log(d_B), d_B \leq d_A$

where Γ_t is entangling rate between \mathcal{A} and \mathcal{B} . This result holds for all dimensions d_a , d_b and all states ρ_{AB} of a composite system AB.

Extension 0-2. α Holevo capacity

By introducing a sandwiched Rényi relative entropy, theorem 0 can be extended to

$$\mathcal{C}_{\chi}^{lpha}\left(t
ight)=\sum_{i}p_{i}\mathcal{D}_{lpha}\left[
ho_{\mathcal{B}}^{i}\left(t
ight)||
ho_{\mathcal{B}}\left(t
ight)
ight]$$
 , $lpha\in\left(0,+\infty
ight)$,

where

$$\mathcal{D}_{\alpha}\left[\rho_{\mathcal{B}}^{i}(t) \left|\left|\rho_{\mathcal{B}}(t)\right\right] = \frac{1}{1-\alpha} \log \operatorname{Tr}_{\mathcal{B}}\left\{\left[\rho_{\mathcal{B}}^{i}(t)^{\frac{1-\alpha}{2\alpha}}\rho_{\mathcal{B}}(t) \rho_{\mathcal{B}}^{i}(t)^{\frac{1-\alpha}{2\alpha}}\right]^{\alpha}\right\}.$$

The limiting value of \mathcal{D}_{α} as $\alpha \to 1$ back to S. For $C_{\chi} \propto T(\rho_{\mathcal{B}}^{i}, \overline{\rho_{\mathcal{B}}^{i}})$ and $C_{\chi}(t) \propto \varepsilon$, we obtain conclusions similar to Theorems 1 and 2.

Extension 3. α entanglement capacity

The generalized entanglement capacity depends on the Rényi order as

time-independent Holevo capacity is bound by trace distance as

$$\sum_{i} 2p_{i}(1-p_{i})^{2} T\left(\rho_{\mathcal{B}}^{i}, \overline{\rho_{\mathcal{B}}^{i}}\right)^{2} \leq C_{\chi} \leq -\sum_{i} p_{i} \log\left(p_{i}\right) T\left(\rho_{\mathcal{B}}^{i}, \overline{\rho_{\mathcal{B}}^{i}}\right),$$

By applying the improved Pinsker's inequality and defining the measured relative $S_M\left(\rho_{\mathcal{B}}^i || \overline{\rho_{\mathcal{B}}^i}\right)$, we obtain $T\left(\rho_{\mathcal{B}}^i, \rho_{\mathcal{B}}^i\right) \leq \sqrt{1 - \exp\left[-S_M\left(\rho_{\mathcal{B}}^i, \overline{\rho_{\mathcal{B}}^i}\right)\right]}$.

Theorem 2. $C_{\chi}(t) \propto \varepsilon$?

Information dynamics means operator spreading, which is limited by the Lieb-Robinson bound. The time-dependent Holevo capacity is bound by LR bound

 $\sum_{i} 2p_{i}(1-p_{i})^{2}\varepsilon^{2} \leqslant C_{\chi}(t) \leqslant H(p)\varepsilon$

where the Shannon entropy H(p) is expressed as $H(p) = -\sum_i p_i \log(p_i)$.

$$\left| dC_{\chi}^{lpha}\left(t
ight) / dt
ight| \leqslant \left\{ egin{array}{ccc} rac{4lpha}{|lpha-1|} \left\| H_{\mathsf{AB}}
ight\| \left| d_{\mathsf{B}}^2, & lpha < 1, \ 2O\left(1
ight) \left\| H_{\mathsf{AB}}
ight\| \log\left(d_{\mathsf{B}}
ight), & lpha = 1 \ rac{4lpha}{|lpha-1|} \left\| H_{\mathsf{AB}}
ight\| \left| d_{\mathsf{B}}^{rac{2(lpha-1)}{lpha}}, & lpha > 1, \end{array}
ight\}$$

Future perspective: Extend our results to noisy channels

References: Cheng Shang, Hayato Kinkawa, and Tomotaka Kuwahara, unpublished 2024.

Acknowledgments

Cheng Shang acknowledges the financial support by the CSC and the MEXT Scholarship under Grant No. 211501. Cheng Shang was also supported by the **RIKEN** Junior Research Associate Program.