Equivalence between operator spreading and information propagation

Cheng Shang $\oplus^{1, *}$, Hayato Kinkawa \odot^{1}, and Tomotaka Kuwahara $\odot^{2,3, \dagger}$
Programs for
Junior Scientists
${ }^{1}$ Department of Physics, The University of Tokyo
${ }^{2}$ Analytical quantum complexity RIKEN Hakubi Research Team, RQC
${ }^{3}$ PRESTO, Japan Science and Technology
*cheng.shang@riken.jp; †tomotaka.kuwahara@riken.jp

■ Operator spreading and the Lieb-Robinson bound

Figure 1: $\varepsilon=\exp \left[-\operatorname{const}\left(d_{A B}-v_{L R} t\right)\right]$, the Lieb-Robinson bound gives an upper bound on operator spreading, where $v_{L R}$ is called Lieb-Robinson velocity ${ }^{[1]}$.

■ Information propagation and the Holevo capacity

Figure 2: $C_{\chi}(t)$, the Holevo capacity quantifies the maximum amount of a quantum channel to transmit classical information ${ }^{[2]}$.

■ Information propagation as operator spreading

$$
C_{\chi}(t) \propto\left|\operatorname{Tr}_{\mathrm{B}}\left\{O_{\mathrm{B}}\left[\rho_{\mathrm{B}}(t)-\rho_{\mathrm{B}}^{\prime}(t)\right]\right\}\right| \leqslant \sup _{\left\|O_{\mathrm{B}}\right\|=1}\left\|O_{\mathrm{B}}(t), \tau_{\mathrm{A}}\right\|_{1} \leqslant \varepsilon
$$

Simple example:
Encoding: $\left\{p_{0}, \mathrm{I}_{\mathrm{A}}\right\}$ and $\left\{1-p_{0}, \tau_{\mathrm{A}}\right\}$, where I_{A} and τ_{A} represent identity and unitary operation to A, respectively.
Unitary evolution: $U_{A B}(t)=\mathcal{T} \exp \left[-i \int_{0}^{t} H_{\mathrm{AB}}(\tau) d \tau\right]$ with any Hamiltonian $H_{A B}$. We have

$$
\begin{aligned}
\rho_{\mathrm{B}}(t) & =\operatorname{Tr}_{\mathrm{A}}\left[U_{\mathrm{AB}}(t) \mathrm{I}_{\mathrm{A}} \rho_{\mathrm{AB}}(0) \mathrm{I}_{\mathrm{A}} U_{\mathrm{AB}}^{\dagger}(t)\right] \\
\rho_{\mathrm{B}}^{\prime}(t) & =\operatorname{Tr}_{\mathrm{A}}\left[U_{\mathrm{AB}}(t) \tau_{\mathrm{A}} \rho_{\mathrm{AB}}(0) \tau_{\mathrm{A}}^{\dagger} U_{\mathrm{AB}}^{\dagger}(t)\right],
\end{aligned}
$$

the reduced density matrices $\rho_{\mathrm{B}}(t)$ and $\rho_{\mathrm{B}}^{\prime}(t)$ correspond to I_{A} and τ_{A}.

- Finding tight constraints on the classical capacity of quantum channels 1. $C_{\chi} \propto T$? The trace distance between stationary states ρ_{B} and $\rho_{\mathrm{B}}^{\prime}$ can be written as $T\left(\rho_{\mathrm{B}}, \rho_{\mathrm{B}}^{\prime}\right):=0.5\left\|\rho_{\mathrm{B}}-\rho_{\mathrm{B}}^{\prime}\right\|_{1}$.

2. $C_{\chi}(t) \propto \varepsilon$? Case of $\rho_{\mathrm{B}}(t)$ and $\rho_{\mathrm{B}}^{\prime}(t)$ change over time.
3. How to estimate the classical communication rate, $d C_{\chi}(t) / d t$?

References: [1] E. H. Lieb and D. W. Robinson, 1972. [2] A. Holevo, 1973.

Setup and main results

■ Our Setup

Figure 3: Ancilla-assisted entangling model.

Purification: start from a pure state $\rho_{\mathcal{A B}}$, where $a \cup \mathrm{~A}=\mathcal{A}$ and $b \cup \mathrm{~B}=\mathcal{B}$.
Encoding: define \mathcal{E} by a set of CPTP maps acting on $\mathcal{A},\left\{p_{i}, \rho_{i}=\tau_{\mathcal{A}, i}\left(\rho_{\mathcal{A B}}\right)\right\}$. A noiseless channel $\sigma_{t}: U_{\mathcal{A B}}(t)=I_{a} \otimes \exp \left(i H_{\mathrm{AB}} t\right) \otimes I_{b}$.
we have $\rho_{\mathcal{B}}^{i}=\operatorname{tr}_{\mathcal{A}}\left[\sigma_{t} \circ \tau_{\mathcal{A}, i}\left(\rho_{\mathcal{A B}}\right)\right]=\operatorname{tr}_{\mathcal{A}}\left[U_{\mathcal{A B}}(t) \tau_{\mathcal{A}, i}\left(\rho_{\mathcal{A B}}\right) U_{\mathcal{A B}}^{\dagger}(t)\right]$.
■ Theorem 0 . No operator spreading \Leftrightarrow zero information propagation

$$
C_{\chi}(t)=\sum_{i} p_{i} S\left[\rho_{\mathcal{B}}^{i}(t) \| \rho_{\mathcal{B}}(t)=p_{i} \rho_{\mathcal{B}}^{i}(t)\right]
$$

for $\forall i, \rho_{B}^{i}(t)=\rho_{B}(t) \Leftrightarrow C_{\chi}(t)=0$.
\square Theorem 1. $C_{\chi} \propto T\left(\rho_{\mathcal{B}}^{i}, \overline{\rho_{\mathcal{B}}^{\prime}}\right)$?
Using Holevo skew divergence and defining the complementary states $\overline{\rho_{\mathcal{B}}^{\dot{i}}}$, the time-independent Holevo capacity is bound by trace distance as

$$
\sum_{i} 2 p_{i}\left(1-p_{i}\right)^{2} T\left(\rho_{\mathcal{B}}^{i}, \overline{\rho_{\mathcal{B}}^{\prime}}\right)^{2} \leqslant C_{\chi} \leqslant-\sum_{i} p_{i} \log \left(p_{i}\right) T\left(\rho_{\mathcal{B}}^{i}, \overline{\rho_{\mathcal{B}}^{\prime}}\right)
$$

By applying the improved Pinsker's inequality and defining the measured relative $S_{M}\left(\rho_{\mathcal{B}}^{i} \| \overline{\rho_{\mathcal{B}}}\right)$, we obtain $T\left(\rho_{\mathcal{B}}^{i}, \rho_{\mathcal{B}}^{i}\right) \leqslant \sqrt{1-\exp \left[-S_{M}\left(\rho_{\mathcal{B}}^{i}, \overline{\rho_{\mathcal{B}}}\right)\right]}$.

■ Theorem 2. $C_{\chi}(t) \propto \varepsilon$?
Information dynamics means operator spreading, which is limited by the LiebRobinson bound. The time-dependent Holevo capacity is bound by LR bound

$$
\sum_{i} 2 p_{i}\left(1-p_{i}\right)^{2} \varepsilon^{2} \leqslant C_{\chi}(t) \leqslant H(p) \varepsilon
$$

where the Shannon entropy $H(p)$ is expressed as $H(p)=-\sum_{i} p_{i} \log \left(p_{i}\right)$.

Entanglement capaciry

■ Theorem 3. Entanglement capacity, $d C_{\chi}(t) / d t$?
We prove that it is captured by the small-incremental-entangling theorem as

$$
\left|d C_{\chi}(t) / d t\right| \leqslant 2 \Gamma_{t}=2 O(1)\left\|H_{\mathrm{AB}}\right\| \log \left(d_{\mathrm{B}}\right), d_{\mathrm{B}} \leqslant d_{\mathrm{A}}
$$

where Γ_{t} is entangling rate between \mathcal{A} and \mathcal{B}. This result holds for all dimensions d_{a}, d_{b} and all states $\rho_{\mathcal{A B}}$ of a composite system $\mathcal{A B}$.

■ Extension 0-2. α Holevo capacity

By introducing a sandwiched Rényi relative entropy, theorem 0 can be extended to

$$
C_{\chi}^{\alpha}(t)=\sum_{i} p_{i} \mathcal{D}_{\alpha}\left[\rho_{\mathcal{B}}^{i}(t) \| \rho_{\mathcal{B}}(t)\right], \alpha \in(0,+\infty)
$$

where

$$
\mathcal{D}_{\alpha}\left[\rho_{\mathcal{B}}^{i}(t) \| \rho_{\mathcal{B}}(t)\right]=\frac{1}{1-\alpha} \log \operatorname{Tr}_{\mathcal{B}}\left\{\left[\rho_{\mathcal{B}}^{i}(t)^{\frac{1-\alpha}{2 \alpha}} \rho_{\mathcal{B}}(t) \rho_{\mathcal{B}}^{i}(t)^{\frac{1-\alpha}{2 \alpha}}\right]^{\alpha}\right\}
$$

The limiting value of \mathcal{D}_{α} as $\alpha \rightarrow 1$ back to S. For $C_{\chi} \propto T\left(\rho_{\mathcal{B}}^{i}, \overline{\rho_{\mathcal{B}}^{\prime}}\right)$ and $C_{\chi}(t) \propto \varepsilon$, we obtain conclusions similar to Theorems 1 and 2.

■ Extension 3. α entanglement capacity

The generalized entanglement capacity depends on the Rényi order as

$$
\left|d C_{\chi}^{\alpha}(t) / d t\right| \leqslant\left\{\begin{array}{cc}
\frac{4 \alpha}{|\alpha-1|}\left\|H_{\mathrm{AB}}\right\| d_{\mathrm{B}}^{2}, & \alpha<1 \\
2 O(1)\left\|H_{\mathrm{AB}}\right\| \log \left(d_{\mathrm{B}}\right), & \alpha=1 \\
\frac{4 \alpha}{|\alpha-1|}\left\|H_{\mathrm{AB}}\right\| d_{\mathrm{B}}^{\frac{2(\alpha-1)}{\alpha}}, & \alpha>1
\end{array}\right.
$$

■ Future perspective: Extend our results to noisy channels
■ References: Cheng Shang, Hayato Kinkawa, and Tomotaka Kuwahara, unpublished 2024.

■ Acknowledgments

Cheng Shang acknowledges the financial support by the CSC and the MEXT Scholarship under Grant No. 211501. Cheng Shang was also supported by the RIKEN Junior Research Associate Program.

