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Introduction

� Operator spreading and the Lieb-Robinson bound
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Figure 1: ε = exp [−const (dAB − vLRt)], the Lieb-Robinson bound gives an up-

per bound on operator spreading, where vLR is called Lieb-Robinson velocity[1].

� Information propagation and the Holevo capacity

Quantum channel

Classical information

Figure 2: Cχ (t), the Holevo capacity quantifies the maximum amount

of a quantum channel to transmit classical information[2].

� Information propagation as operator spreading

Cχ (t) ∝
∣∣TrB

{
OB

[
ρB (t) − ρ′

B (t)
]}∣∣ 6 sup

‖OB‖=1
‖OB (t) , τA‖1 6 ε

Simple example:

Encoding: {p0, IA} and {1 − p0, τA}, where IA and τA represent identity

and unitary operation to A, respectively.
Unitary evolution: UAB (t) = T exp

[
−i

∫ t
0 HAB (τ)dτ

]
with any Hamil-

tonian HAB. We have

ρB (t) =TrA

[
UAB (t) IAρAB (0) IAU†

AB (t)
]

,

ρ′
B (t) =TrA

[
UAB (t) τAρAB (0) τ †

AU†
AB (t)

]
,

the reduced density matrices ρB (t) and ρ′
B (t) correspond to IA and τA.

� Finding tight constraints on the classical capacity of quantum channels

1. Cχ ∝ T ? The trace distance between stationary states ρB and ρ′
B can

be written as T (ρB, ρ′
B) := 0.5‖ρB − ρ′

B‖1.
2. Cχ (t) ∝ ε ? Case of ρB (t) and ρ′

B (t) change over time.

3. How to estimate the classical communication rate, dCχ (t)/dt ?
References: [1] E. H. Lieb and D. W. Robinson, 1972. [2] A. Holevo, 1973.

Setup and main results
� Our Setup
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Figure 3: Ancilla-assisted entangling model.

Purification: start from a pure state ρAB, where a ∪ A = A and b ∪ B = B.

Encoding: define E by a set of CPTP maps acting on A, {pi , ρi = τA,i (ρAB)}.
A noiseless channel σt : UAB (t) = Ia ⊗ exp (iHABt) ⊗ Ib .
we have ρi

B = trA [σt ◦ τA,i (ρAB)] = trA[UAB (t) τA,i (ρAB) U†
AB (t)].

� Theorem 0. No operator spreading ⇔ zero information propagation

Cχ (t) =
∑

i
piS

[
ρi

B (t) ||ρB (t) = piρ
i
B (t)

]
,

for ∀i , ρi
B (t) = ρB (t) ⇔ Cχ (t) = 0.

� Theorem 1. Cχ ∝ T
(
ρi

B, —ρi
B

)
?

Using Holevo skew divergence and defining the complementary states —ρi
B, the

time-independent Holevo capacity is bound by trace distance as∑
i
2pi(1 − pi)2T

(
ρi

B, —ρi
B

)2
6 Cχ 6 −

∑
i
pi log (pi) T

(
ρi

B, —ρi
B

)
,

By applying the improved Pinsker’s inequality and defining the measured rel-

ative SM
(
ρi

B||—ρi
B

)
, we obtain T

(
ρi

B, ρi
B

)
6

√
1 − exp

[
−SM

(
ρi

B, —ρi
B

)]
.

� Theorem 2. Cχ (t) ∝ ε ?

Information dynamics means operator spreading, which is limited by the Lieb-

Robinson bound. The time-dependent Holevo capacity is bound by LR bound∑
i
2pi(1 − pi)2ε2 6 Cχ (t) 6 H(p)ε

where the Shannon entropy H(p) is expressed as H(p) = −
∑

i pi log (pi).

Entanglement capaciry
� Theorem 3. Entanglement capacity, dCχ (t)/dt ?

We prove that it is captured by the small-incremental-entangling theorem as

|dCχ (t)/dt| 6 2Γt = 2O (1) ‖HAB‖ log (dB) , dB 6 dA

where Γt is entangling rate between A and B. This result holds for all dimen-

sions da, db and all states ρAB of a composite system AB.

� Extension 0-2. α Holevo capacity

By introducing a sandwiched Rényi relative entropy, theorem 0 can be ex-

tended to

Cα
χ (t) =

∑
i
piDα

[
ρi

B (t) ||ρB (t)
]

, α ∈ (0, +∞) ,

where

Dα

[
ρi

B (t) ||ρB (t)
]

= 1
1 − α

log TrB

{[
ρi

B(t)
1−α
2α ρB (t) ρi

B(t)
1−α
2α

]α}
.

The limiting value of Dα as α → 1 back to S . For Cχ ∝ T
(
ρi

B, —ρi
B

)
and

Cχ (t) ∝ ε, we obtain conclusions similar to Theorems 1 and 2.

� Extension 3. α entanglement capacity

The generalized entanglement capacity depends on the Rényi order as

∣∣dCα
χ (t)

/
dt

∣∣ 6


4α
|α−1| ‖HAB‖ d2

B, α < 1,
2O (1) ‖HAB‖ log (dB) , α = 1

4α
|α−1| ‖HAB‖ d

2(α−1)
α

B , α > 1,
.

� Future perspective: Extend our results to noisy channels

� References: Cheng Shang, Hayato Kinkawa, and Tomotaka Kuwahara,

unpublished 2024.
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