Approximate degree lower bounds for oracle identification problems

Mark Bun, Nadezhda Voronova Boston University

Query model

Given: oracle (black box) access to $x \in \{0, 1\}^n$ **Goal**: compute f(x)**Cost:** # of queries

Why consider?

- Strips away implementation details.
- Can prove unconditional lower bounds!

Resources in query model: example

Types of queries:

- Deterministic
 - No additional resources
 - Without error
 - Computing OR requires $\Theta(n)$ queries
- Randomized
 - Access to unbiased random bits
 - Correct with success Pr ⅔
 - Computing OR requires $\Theta(n)$ queries
- Quantum : $\Theta(\sqrt{n})$
 - Query in superposition
 - Correct with success Pr 3/3
 - Computing OR requires $\Theta(\sqrt{n})$ queries

Resources in query model: example

Types of queries:

- Deterministic
 - No additional resources
 - Without error
 - Computing OR requires $\Theta(n)$ queries
- Randomized
 - Access to unbiased random bits
 - Correct with success Pr ⅔
 - Computing OR requires $\Theta(n)$ queries
- Quantum : $\Theta(\sqrt{n})$
 - Query in superposition
 - Correct with success Pr 3/3
 - Computing *OR* requires $\Theta(\sqrt{n})$

Approximate degree

Let $f: D \to \{0,1\}$ where $D \subseteq \{0,1\}^n$.

A polynomial $p: \{0, 1\}^n \to \mathbb{R}$ is ε -approximation to f if

- $-\varepsilon \le p(x) \le 1 + \varepsilon$ for all $x \in \{0, 1\}^n$
- $|p(x) f(x)| \le \varepsilon$ for all $x \in D$

Approximate degree $deg_{\varepsilon}(f)$ of f is the least degree of a polynomial that ε -approximates f.

Default error $\varepsilon = \frac{1}{3}$

Corresponds to bounded error query model

Applications of deg

Upper bounds:

• Learning Algorithms

[Klivans-Servedio03, Klivans-Servedio06, Kalai-Klivans-Mansour-Servedio06]

• Approximate Inclusion-Exclusion

[Kahn-Linial-Samorodnitsky96, Sherstov08]

• Differentially Private Query Release

[Thaler-Ullman-Vadhan12, Chandrasekaran-Thaler-Ullman-Wan14]

 Formula & Graph Complexity Lower Bounds [Tal14,16ab]

Lower bounds:

Communication Complexity

[Sherstov07, Shi-Zhu07, Chattopadhyay-Ada08, Lee-Shraibman08,...]

• Circuit Complexity

[Minsky-Papert69, Beigel93, Sherstov08]

• Oracle Separations

[Beigel94, Bouland-Chen-Holden-Thaler-Vasudevan16]

• Secret Sharing Schemes

[Bogdanov-Ishai-Viola-Williamson16]

<u>Quantum query complexity</u>

Polynomial method

Acceptance probability of a randomized T-query algorithm is a polynomial of degree T.

The ε -approximate degree of a function is always at most its randomized query complexity with error ε .

Polynomial method

Acceptance probability of a quantum T-query algorithm is a polynomial of degree 2T.

The ε -approximate degree of a function is always at most $\frac{1}{2}$ its quantum query complexity with error ε .

Polynomial method

Acceptance probability of a quantum T-query algorithm is a polynomial of degree 2T.

The ε -approximate degree of a function is always at most ½ its quantum query complexity with error ε .

Advantages

- Robust.
 - Lifts to quantum communication [She11],
 - Can yield lower bounds against zero-, small-, and <u>unbounded-error</u> quantum algorithms [BBC+01, BCdWZ99],
 - Gives time-space tradeoffs [KSdW07]
- Transparent in identifying the hardness
 - Search vs decision problem
 - Can be more intuitive than some other methods

Other ways to prove lower bounds: "adversary" methods

- "Positive-weights" method [Ambainis02]
 - Easy to apply, but limited in power
- "Negative-weights" method [Høyer-Lee-Špalek07, ..., Reichardt11]
 - Tight characterization, but difficult to apply

Ordered search OS_{2^n}

Given: string $0^{x}1^{N-x}$, $N = 2^{n}$ Output: x

Hidden string

Ordered search OS_{2^n}

Given: string $0^{x}1^{N-x}$, $N = 2^{n}$ Output: x

Hidden string

Ordered search OS_{2^n}

Given: string $0^{x}1^{N-x}$, $N = 2^{n}$ Output: x

Hidden string

Ordered search OS_{2^n}

Given: string $0^{x}1^{N-x}$, $N = 2^{n}$ Output: x

Hidden string

Ordered search OS_{2^n}

Given: string $0^x 1^{N-x}$, $N = 2^n$ Output: parity(x)

Hidden string

Results: state-of-the-art

	Ordered Search OS_{2^n}	Hidden String
Approximate degree, Quantum query complexity for decision problem	$O(n), \Omega(\sqrt{n})$ [BdW99]	O(n) [SS95][CIG+12]
Quantum query complexity for reconstruction problem	$\Theta(n)$ [BdW99, FGGS98, Amb99, HNS02, CL08]	$O(n)$ [SS95], $\Omega(n/\log^2 n)$ [CIG+12]

Results: bounded error

	Ordered Search OS_{2^n}	Hidden String
Approximate degree, Quantum query complexity for decision problem	$O(n), \Omega(\sqrt{n})$ [BdW99] This work: $\Omega(n/\log^2 n)$	O(n) [SS95][CIG+12] This work: $\Omega(n/\log^2 n)$
Quantum query complexity for reconstruction problem	$\Theta(n)$ [BdW99, FGGS98, Amb99, HNS02, CL08]	$O(n)$ [SS95], $\Omega(n/\log^2 n)$ [CIG+12] This work: $\Omega(n/\log^2 n)$

Results: unbounded error

	Ordered Search OS_{2^n}	Hidden String
Approximate degree, Quantum query complexity for decision problem Success pr $\frac{1}{2} + \gamma$	$O\left(n - \log \frac{1}{\gamma}\right), \Omega(\sqrt{n} - \log \frac{1}{\gamma})$ [BdW99] This work: $\Omega(\frac{n}{\log^2 n} - \log \frac{1}{\gamma})$	O(n) [SS95] [CIG+12] This work: $\Omega(\frac{n}{\log^2 n} - \log \frac{1}{\gamma})$
Quantum query complexity for reconstruction problem Success pr γ	$\Theta(n\ -\lograc{1}{\gamma})$ [Implicit in Amb99]	$O\left(n - \log\frac{1}{\gamma}\right) \text{[SS95],}$ $\Omega(\gamma^2 \frac{n}{\log^2 n}) \text{[CIG+12]}$ This work: $\Omega(\frac{n}{\log^2 n} - \log\frac{1}{\gamma})$

• All results in this work were achieved using the same framework.

Ordered search OS_{2^n}

Given: string $0^{x}1^{N-x}$, $N = 2^{n}$ Output: parity(x)

Hidden string

Theorem. Every polynomial that approximates OS_{2^n} requires degree $\Omega(\sqrt{n})$.

Theorem. Every polynomial that approximates OS_{2^n} requires degree $\Omega(\sqrt{n})$.

Theorem. Every polynomial that approximates OS_{2^n} requires degree $\Omega(\sqrt{n})$.

Claim 1. $\forall i \in \{0, 1\}^n$ there exists a polynomial of x of degree $O(\sqrt{n})$ that approximates $GT_i(x)$.

Claim 1. $\forall i \in \{0, 1\}^n$ there exists a polynomial of x of degree $O(\sqrt{n})$ that approximates $GT_i(x)$.

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

Claim 1. $\forall i \in \{0, 1\}^n$ there exists a polynomial of x of degree $O(\sqrt{n})$ that approximates $GT_i(x)$.

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

Claim 2. Every polynomial of x that approximates parity(x) requires degree $\Omega(n)$.

Theorem. Every polynomial that approximates OS_{2^n} requires degree $\Omega(n/\log^2 n)$.

Theorem. Every polynomial that approximates OS_{2^n} requires degree $\Omega(n/\log^2 n)$.

Claim 1. $\forall i \in \{0, 1\}^n$ there exists a polynomial of Y(x) of degree $O(\log n)$ that approximates $GT_i(x)$.

Claim 1. $\forall i \in \{0, 1\}^n$ there exists a polynomial of Y(x) of degree $O(\log n)$ that approximates $GT_i(x)$.

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

Claim 1. $\forall i \in \{0, 1\}^n$ there exists a polynomial of Y(x) of degree $O(\log n)$ that approximates $GT_i(x)$.

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

Claim 2. Every polynomial of Y(x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

Claim 1. W.h.p. $\forall i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n)$ that approximates $GT_i(x)$.

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

Claim 2. W.h.p. every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

EQ(a, b) = 1 iff a = b

Only need constant communication for constant error! Need $O(\log \log n)$ for $\frac{1}{\log n} = 2^{-\log \log n}$ error.

 $Y(x) = (\langle r', x \rangle)_{r' \in \{0,1\}^n}$

The oracle Y contains all the possible partial parities of x.

 $Y(x) = (\langle r', x \rangle)_{r' \in \{0,1\}^n}$

The oracle Y contains all the possible partial parities of x.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

 $Y(x) = (\langle r', x \rangle)_{r' \in \{0,1\}^n}$

The oracle Y contains all the possible partial parities of x.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

• There exists a randomized algorithm that given *i* (hardcoded) and access to Y(x), outputs $GT_i(x)$ with Pr 2/3 with query complexity $O(\log n \log \log n)$.

 $Y(x) = (\langle r', x \rangle)_{r' \in \{0,1\}^n}$

The oracle Y contains all the possible partial parities of x.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

- There exists a randomized algorithm that given *i* (hardcoded) and access to Y(x), outputs $GT_i(x)$ with Pr 2/3 with query complexity $O(\log n \log \log n)$.
- Every randomized query algorithm converts to a polynomial of the same degree as query complexity.

 $Y(x) = (\langle r', x \rangle)_{r' \in \{0,1\}^n}$

The oracle Y contains all the possible partial parities of x.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

- There exists a randomized algorithm that given *i* (hardcoded) and access to Y(x), outputs $GT_i(x)$ with Pr 2/3 with query complexity $O(\log n \log \log n)$.
- Every randomized query algorithm converts to a polynomial of the same degree as query complexity.

 $Y(x) = (\langle r', x \rangle)_{r' \in \{0,1\}^n}$

The oracle Y contains all the possible partial parities of x.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

- There exists a randomized algorithm that given *i* (hardcoded) and access to Y(x), outputs $GT_i(x)$ with Pr 2/3 with query complexity $O(\log n \log \log n)$.
- Every randomized query algorithm converts to a polynomial of the same degree as query complexity.

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

Exists a polynomial of degree 1: $parity(x) = \langle 1^n, x \rangle$

 $Y(x) = (\langle r', x \rangle)_{r' \in \{0,1\}^n}$

The oracle Y contains all the possible partial parities of x.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

- There exists a randomized algorithm that given *i* (hardcoded) and access to Y(x), outputs $GT_i(x)$ with Pr 2/3 with query complexity $O(\log n \log \log n)$.
- Every randomized query algorithm converts to a polynomial of the same degree as query complexity.

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

Exists a polynomial of degree 1: $parity(x) = \langle 1^n, x \rangle$

Second attempt

 $Y(r, x) = (\langle r', x \rangle)_{r \in r}$

 $r \leftarrow R$

The oracle Y has enough info for one full run of GT.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

Second attempt

 $Y(r, x) = (\langle r', x \rangle)_{r \in r}$

 $r \leftarrow R$

The oracle Y has enough info for one full run of GT.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

 $Y(r,x) = (\langle r',x\rangle)_{r' \in r}$

The oracle Y has enough info for one full run of GT.

 $r \leftarrow R$

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

 $Y(r,x) = (\langle r',x\rangle)_{r' \in r}$

The oracle Y has enough info for one full run of GT.

 $r \leftarrow R$

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

• There exists a deterministic algorithm that for all $i, x \in \{0, 1\}^n$ with Pr 2/3 outputs $GT_i(x)$ with query complexity $O(\log n \log \log n)$.

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

 $Y(r,x)=(\langle r',x\rangle)_{r'\in r}$

The oracle Y has enough info for one full run of GT.

 $r \leftarrow R$

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

- There exists a deterministic algorithm that for all $i, x \in \{0, 1\}^n$ with Pr 2/3 outputs $GT_i(x)$ with query complexity $O(\log n \log \log n)$.
- Wrong order!

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

 $Y(r, x) = (\langle r', x \rangle)_{r \in r}$

 $r \leftarrow R$

The oracle *Y* has enough info for one full run of *GT*.

1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

- There exists a deterministic algorithm that for all $i, x \in \{0, 1\}^n$ with Pr 2/3 outputs $GT_i(x)$ with query complexity $O(\log n \log \log n)$.
- Wrong order!

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

 $Y(r,x) = (\langle r',x\rangle)_{r'\in r}$

 $r \leftarrow R$

The oracle *Y* has enough info for t = poly(n) full runs of *GT*.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

 $Y(r,x) = (\langle r',x\rangle)_{r'\in r}$

 $r \leftarrow R$

The oracle *Y* has enough info for t = poly(n) full runs of *GT*.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

 $Y(r,x) = (\langle r',x\rangle)_{r'\in r}$

 $r \leftarrow R$

The oracle *Y* has enough info for t = poly(n) full runs of *GT*.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

 $Y(r,x) = (\langle r',x\rangle)_{r'\in r}$

 $r \leftarrow R$

The oracle Y has enough info for t = poly(n) full runs of GT.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

• There exists a randomized algorithm that with Pr 2/3 over $r \leftarrow R$ for all $i, x \in \{0, 1\}^n$ outputs $GT_i(x)$ with Pr 2/3 over internal randomness with query complexity $O(\log n \log \log n)$.

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

 $Y(r,x) = (\langle r',x\rangle)_{r'\in r}$

 $r \leftarrow R$

The oracle Y has enough info for t = poly(n) full runs of GT.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

- There exists a randomized algorithm that with Pr 2/3 over $r \leftarrow R$ for all $i, x \in \{0, 1\}^n$ outputs $GT_i(x)$ with Pr 2/3 over internal randomness with query complexity $O(\log n \log \log n)$.
- Every randomized query algorithm converts to a polynomial of the same degree as query complexity.

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

 $Y(r,x) = (\langle r',x\rangle)_{r' \in r}$

$$r \leftarrow R$$

The oracle Y has enough info for t = poly(n) full runs of GT.

Claim 1. With probability 2/3 over the choice of $r \leftarrow R$ for each $i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n \log \log n)$ that approximates $GT_i(x)$.

- There exists a randomized algorithm that with Pr 2/3 over $r \leftarrow R$ for all $i, x \in \{0, 1\}^n$ outputs $GT_i(x)$ with Pr 2/3 over internal randomness with query complexity $O(\log n \log \log n)$.
- Every randomized query algorithm converts to a polynomial of the same degree as query complexity.

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

Oracle structure

$$(Y(r, x))_i = \langle r_i, x \rangle$$

$$r = (r_1, r_2, \dots, r_m), r_i \in \{0, 1\}^n$$

$$r \leftarrow R$$
Random bit
Zero

Updated oracle structure R

t = poly(n)

Input: oracle access to Y(r, x)

1. Sample $j \leftarrow [t]$ u.a.r

...

Copy j

Copy t							

. . .

- 1. Sample $j \leftarrow [t]$ u.a.r
- 2. Simulate communication protocol using inner products from copy *j*

- 1. Sample $j \leftarrow [t]$ u.a.r
- 2. Simulate communication protocol using inner products from copy *j*
 - Compute $\langle i,$
 - Query $\langle x,$
 - Compare values

- 1. Sample $j \leftarrow [t]$ u.a.r
- 2. Simulate communication protocol using inner products from copy *j*
 - Compute $\langle i,$
 - Query $\langle x,$
 - Compare values

- 1. Sample $j \leftarrow [t]$ u.a.r
- 2. Simulate communication protocol using inner products from copy *j*
 - Compute $\langle i,$
 - Query $\langle x,$
 - Compare values

- 1. Sample $j \leftarrow [t]$ u.a.r
- 2. Simulate communication protocol using inner products from copy *j*
 - Compute $\langle i,$
 - Query $\langle x,$
 - Compare values

- 1. Sample $j \leftarrow [t]$ u.a.r
- 2. Simulate communication protocol using inner products from copy *j*
 - Compute $\langle i,$
 - Query $\langle x,$
 - Compare values

- 1. Sample $j \leftarrow [t]$ u.a.r
- 2. Simulate communication protocol using inner products from copy *j*
 - Compute $\langle i,$
 - Query $\langle x,$
 - Compare values

- 1. Sample $j \leftarrow [t]$ u.a.r
- 2. Simulate communication protocol using inner products from copy *j*
- 3. Query most significant bit and compare it to the value in *i*
 - Compute $\langle i,$
 - Query $\langle x, \Box \rangle$
 - Compare values

Query algorithm for GT_i

Input: oracle access to Y(r, x)

- 1. Sample $j \leftarrow [t]$ u.a.r
- 2. Simulate communication protocol using inner products from copy *j*
- 3. Query most significant bit and compare it to the value in *i*
 - Compute $\langle i,$
 - Query $\langle x, \Box \rangle$
 - Compare values

Query complexity $O(\log n \log \log n)$

Upper bound for GT_i

Claim 1'. With probability 2/3 over $r \leftarrow R$ u.a.r. for all $i \in \{0, 1\}^n$ there exists an algorithm A_i with oracle access to Y(r, x) that compute the corresponding GT_i with probability 2/3 over internal randomness and has query complexity at most $O(\log n \log \log n)$.

Acceptance probability of a randomized T-query algorithm is a polynomial of degree T.

Claim 1. With probability 2/3 over $r \leftarrow R$ u.a.r. for all $i \in \{0, 1\}^n$ there exists a polynomial q_i of Y(r, x) that approximate the corresponding GT_i and has degree at most $O(\log n \log \log n)$.

Upper bound for GT_i

Claim 1'. With probability 2/3 over $r \leftarrow R$ u.a.r. for all $i \in \{0, 1\}^n$ there exists an algorithm A_i with oracle access to Y(r, x) that compute the corresponding GT_i with probability 2/3 over internal randomness and has query complexity at most $O(\log n)$.

Acceptance probability of a randomized T-query algorithm is a polynomial of degree T.

Claim 1. With probability 2/3 over $r \leftarrow R$ u.a.r. for all $i \in \{0, 1\}^n$ there exists a polynomial q_i of Y(r, x) that approximate the corresponding GT_i and has degree at most $O(\log n)$.

Lower bound for parity

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

- Generalizes for any R with a "good" structure! $\Omega(\frac{n}{\log(size \ of \ oracle \ Y)})$
- Works for approximation to any error

Lower bound for parity

Claim 2. With probability 2/3 over the choice of $r \leftarrow R$ every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

- **Proof idea 1:** We consider polynomials over $\{-1, 1\}$ instead of $\{0, 1\}$
- Proof idea 2: All monomials of degree < n are orthogonal to parity in {−1, 1} basis.
- **Proof idea 3:** Getting a monomial of x of degree n by multiplying $\frac{n}{\log n}$ bits of Y(r, x) is improbable.

Lower bound for parity: key lemma

Final result for OS

Theorem. Every polynomial that approximates OS_{2^n} requires degree $\Omega(n/\log^2 n)$.

Claim 1. W.h.p. $\forall i \in \{0, 1\}^n$ there exists a polynomial of Y(r, x) of degree $O(\log n)$ that approximates $GT_i(x)$.

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

Claim 2. W.h.p. Every polynomial of Y(r, x) that approximates parity(x) requires degree $\Omega(n/\log n)$.

Summary

- New (and almost tight) lower bound for approximate degree of Ordered search: $\Omega(n/\log^2 n)$
- Generalizable to unbounded error regime: $\Omega(\frac{n}{\log^2 n} \log \frac{1}{\gamma})$
- Same lower bounds for Hidden string problem using the same approach
- As a corollary, lower bounds on quantum query complexity of decision versions
- New framework for lower bounds on oracle identification problems

Open problems:

- Using the easiness of one problem in the presence of additional information to prove the hardness of another
- Using this framework for other open problems
- Using this framework in other settings: circuit complexity, proof complexity, massive parallel computation model, ...
- Closing the gap for ordered search and hidden string: $\Omega(n/\log^2 n)$ and O(n)

Summary

- New (and almost tight) lower bound for approximate degree of Ordered search: $\Omega(n/\log^2 n)$
- Generalizable to unbounded error regime: $\Omega(\frac{n}{\log^2 n} \log \frac{1}{\gamma})$
- Same lower bounds for Hidden string problem using the same approach
- As a corollary, lower bounds on quantum query complexity of decision versions
- New framework for lower bounds on oracle identification problems

Thank you!

Open problems:

- Using the easiness of one problem in the presence of additional information to prove the hardness of another
- Using this framework for other open problems
- Using this framework in other settings: circuit complexity, proof complexity, massive parallel computation model, ...
- Closing the gap for ordered search and hidden string: $\Omega(n/\log^2 n)$ and O(n)