
Approximate degree lower bounds
for oracle identification problems

Mark Bun, Nadezhda Voronova
Boston University

Query model

Why consider?

● Strips away implementation details.

● Can prove unconditional lower bounds!

2

Given: oracle (black box) access to 𝑥 ∈ 0, 1 𝑛

Goal: compute 𝑓 𝑥
Cost: # of queries

𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ [𝑛] 𝑥𝑖

𝑓(𝑥)

Resources in query model: example

3

𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ [𝑛] 𝑥𝑖

𝑂𝑅(𝑥)

Types of queries:
● Deterministic

● No additional resources
● Without error
● Computing 𝑂𝑅 requires Θ(𝑛) queries

● Randomized
● Access to unbiased random bits
● Correct with success Pr ⅔
● Computing 𝑂𝑅 requires Θ(𝑛) queries

● Quantum : Θ(𝑛)
● Query in superposition
● Correct with success Pr ⅔
● Computing 𝑂𝑅 requires Θ(𝑛) queries

Resources in query model: example

4

𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ [𝑛] 𝑥𝑖

𝑂𝑅(𝑥)

Types of queries:
● Deterministic

● No additional resources
● Without error
● Computing 𝑂𝑅 requires Θ(𝑛) queries

● Randomized
● Access to unbiased random bits
● Correct with success Pr ⅔
● Computing 𝑂𝑅 requires Θ(𝑛) queries

● Quantum : Θ(𝑛)
● Query in superposition
● Correct with success Pr ⅔
● Computing 𝑂𝑅 requires Θ(𝑛) queries

Bounded error: success
probability ⅔

Unbounded error: better
than random guessing

Approximate degree

5

Let 𝑓:𝐷 → 0,1 where 𝐷 ⊆ 0, 1 𝑛 .

A polynomial 𝑝: 0, 1 𝑛 → ℝ is 𝜀-approximation to 𝑓 if
• −𝜀 ≤ 𝑝 𝑥 ≤ 1 + 𝜀 for all 𝑥 ∈ 0, 1 𝑛

• 𝑝 𝑥 − 𝑓 𝑥 ≤ 𝜀 for all 𝑥 ∈ 𝐷

Approximate degree ෪𝑑𝑒𝑔𝜀 𝑓 of 𝒇 is the least degree of a polynomial that 𝜀-
approximates 𝑓.

Default error 𝜀 =
1

3

Corresponds to bounded error query model

Applications of ෪𝑑𝑒𝑔

6

Upper bounds:

• Learning Algorithms
[Klivans-Servedio03, Klivans-Servedio06, Kalai-Klivans-Mansour-

Servedio06]

• Approximate Inclusion-Exclusion
[Kahn-Linial-Samorodnitsky96, Sherstov08]

• Differentially Private Query Release
[Thaler-Ullman-Vadhan12, Chandrasekaran-Thaler-Ullman-Wan14]

• Formula & Graph Complexity Lower

Bounds [Tal14,16ab]

Lower bounds:

• Communication Complexity
[Sherstov07, Shi-Zhu07, Chattopadhyay-Ada08, Lee-Shraibman08,...]

• Circuit Complexity
[Minsky-Papert69, Beigel93, Sherstov08]

• Oracle Separations
[Beigel94, Bouland-Chen-Holden-Thaler-Vasudevan16]

• Secret Sharing Schemes
[Bogdanov-Ishai-Viola-Williamson16]

• Quantum query complexity

Polynomial method

7

Acceptance probability of a randomized T-query algorithm is a polynomial of degree T.

The 𝜀-approximate degree of a function is always at most its randomized query
complexity with error 𝜀.

Polynomial method

8

Acceptance probability of a quantum T-query algorithm is a polynomial of degree 2T.

The 𝜀-approximate degree of a function is always at most ½ its quantum query
complexity with error 𝜀.

Polynomial method

9

Acceptance probability of a quantum T-query algorithm is a polynomial of degree 2T.

Advantages
• Robust.

• Lifts to quantum communication [She11],
• Can yield lower bounds against zero-, small-, and

unbounded-error quantum algorithms [BBC+01,

BCdWZ99],
• Gives time-space tradeoffs [KSdW07]

• Transparent in identifying the hardness
• Search vs decision problem
• Can be more intuitive than some other methods

Other ways to prove lower bounds:
“adversary” methods

• “Positive-weights” method [Ambainis02]
• Easy to apply, but limited in

power
• “Negative-weights” method [Høyer-Lee-

Špalek07, ..., Reichardt11]

• Tight characterization, but
difficult to apply

The 𝜀-approximate degree of a function is always at most ½ its quantum query
complexity with error 𝜀.

Problems

10

Ordered search 𝑶𝑺𝟐𝒏

Given: string 0𝑥1𝑁−𝑥, 𝑁 = 2𝑛

Output: 𝑥

Hidden string

Given: collection of bits 𝜏𝑠(𝑥), where
𝜏𝑠 𝑥 = 1 iff 𝑠 is a substring of hidden 𝑥
Output: 𝑥

Problems

11

𝑥 ∈ 0, 1 𝑛

Algorithm

𝑠 ∈ 0, 1 ≤𝑛 𝜏𝑠(𝑥)

𝑥

Ordered search 𝑶𝑺𝟐𝒏

Given: string 0𝑥1𝑁−𝑥, 𝑁 = 2𝑛

Output: 𝑥

Hidden string

Given: collection of bits 𝜏𝑠(𝑥), where
𝜏𝑠 𝑥 = 1 iff 𝑠 is a substring of hidden 𝑥
Output: 𝑥

Problems

12

𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ 0, 1 𝑛 𝐺𝑇𝑖(𝑥)

𝑥

Ordered search 𝑶𝑺𝟐𝒏

Given: string 0𝑥1𝑁−𝑥, 𝑁 = 2𝑛

Output: 𝑥

Hidden string

Given: collection of bits 𝜏𝑠(𝑥), where
𝜏𝑠 𝑥 = 1 iff 𝑠 is a substring of hidden 𝑥
Output: 𝑥

Problems

13

𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ 𝑄 𝑎𝑖(𝑥)

𝑥

Ordered search 𝑶𝑺𝟐𝒏

Given: string 0𝑥1𝑁−𝑥, 𝑁 = 2𝑛

Output: 𝑥

Hidden string

Given: collection of bits 𝜏𝑠(𝑥), where
𝜏𝑠 𝑥 = 1 iff 𝑠 is a substring of hidden 𝑥
Output: 𝑥

Problems

14

𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ 𝑄 𝑎𝑖(𝑥)

𝑝𝑎𝑟𝑖𝑡𝑦(𝑥)

Ordered search 𝑶𝑺𝟐𝒏

Given: string 0𝑥1𝑁−𝑥, 𝑁 = 2𝑛

Output: 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥)

Hidden string

Given: collection of bits 𝜏𝑠(𝑥), where
𝜏𝑠 𝑥 = 1 iff 𝑠 is a substring of hidden 𝑥
Output: 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥)

Results: state-of-the-art

15

Ordered Search 𝑂𝑆2𝑛 Hidden String

Approximate degree,
Quantum query complexity for
decision problem

𝑂 𝑛 ,Ω(𝑛) [BdW99]

This work: Ω(𝑛/ log2 𝑛)
𝑂 𝑛 [SS95][CIG+12]

This work: Ω(𝑛/ log2 𝑛)

Quantum query complexity for
reconstruction problem

Θ(𝑛)
[BdW99, FGGS98, Amb99, HNS02, CL08]

𝑂 𝑛 [SS95], Ω(𝑛/ log2 𝑛) [CIG+12]

This work: Ω(𝑛/ log2 𝑛)

Results: bounded error

16

Ordered Search 𝑂𝑆2𝑛 Hidden String

Approximate degree,
Quantum query complexity for
decision problem

𝑂 𝑛 ,Ω(𝑛) [BdW99]

This work: Ω(𝑛/ log2 𝑛)
𝑂 𝑛 [SS95][CIG+12]

This work: Ω(𝑛/ log2 𝑛)

Quantum query complexity for
reconstruction problem

Θ(𝑛)
[BdW99, FGGS98, Amb99, HNS02, CL08]

𝑂 𝑛 [SS95], Ω(𝑛/ log2 𝑛) [CIG+12]

This work: Ω(𝑛/ log2 𝑛)

Results: unbounded error

17

Ordered Search 𝑂𝑆2𝑛 Hidden String

Approximate degree,
Quantum query complexity for
decision problem

Success pr
1

2
+ 𝛾

𝑂 𝑛 − log
1

𝛾
, Ω(𝑛 − log

1

𝛾
)

[BdW99]

This work: Ω(
𝑛

log2 𝑛
 − log

1

𝛾
)

𝑂 𝑛 [SS95] [CIG+12]

This work:Ω(
𝑛

log2 𝑛
 − log

1

𝛾
)

Quantum query complexity for
reconstruction problem
Success pr 𝛾

Θ(𝑛 − log
1

𝛾
) [Implicit in Amb99] 𝑂 𝑛 − log

1

𝛾
[SS95],

Ω(𝛾2
𝑛

log2 𝑛
) [CIG+12]

This work: Ω(
𝑛

log2 𝑛
− log

1

𝛾
)

• All results in this work were achieved using the same framework.

Problems

18

Ordered search 𝑶𝑺𝟐𝒏

Given: string 0𝑥1𝑁−𝑥, 𝑁 = 2𝑛

Output: 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥)

Hidden string

Given: collection of bits 𝜏𝑠(𝑥), where
𝜏𝑠 𝑥 = 1 iff 𝑠 is a substring of hidden 𝑥
Output: 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥)

𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ 0, 1 𝑛 𝐺𝑇𝑖(𝑥)

𝑝𝑎𝑟𝑖𝑡𝑦(𝑥)

Buhrman and de Wolf’s argument

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛 requires degree Ω(𝑛).

Buhrman and de Wolf’s argument

20

𝑂𝑆2𝑛 ≈ 𝑝

𝐺𝑇00…00

𝑥1𝑥2…𝑥𝑛

𝐺𝑇00…01

𝑥1𝑥2…𝑥𝑛

𝐺𝑇11…11

𝑥1𝑥2…𝑥𝑛

…

𝑝𝑎𝑟𝑖𝑡𝑦

𝑥1𝑥2…𝑥𝑛

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛 requires degree Ω(𝑛).

Buhrman and de Wolf’s argument

21

𝑂𝑆2𝑛 ≈ 𝑝

𝐺𝑇00…00

𝑥1𝑥2…𝑥𝑛

𝐺𝑇00…01

𝑥1𝑥2…𝑥𝑛

𝐺𝑇11…11

𝑥1𝑥2…𝑥𝑛

…

𝑝𝑎𝑟𝑖𝑡𝑦

𝑥1𝑥2…𝑥𝑛

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛 requires degree Ω(𝑛).

degree

 𝑑

Buhrman and de Wolf’s argument

22

𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00

𝑥1𝑥2…𝑥𝑛

𝑞00…01

𝑥1𝑥2…𝑥𝑛

𝑞11…11

𝑥1𝑥2…𝑥𝑛

…

𝑝𝑎𝑟𝑖𝑡𝑦

𝑥1𝑥2…𝑥𝑛

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛 requires degree Ω(𝑛).

𝐺𝑇00…00 ≈

Claim 1. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑥 of degree 𝑂(𝑛) that approximates 𝐺𝑇𝑖(𝑥).

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈

O(𝑛)

degree

 𝑑

Buhrman and de Wolf’s argument

23

𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00

𝑥1𝑥2…𝑥𝑛

𝑞00…01

𝑥1𝑥2…𝑥𝑛

𝑞11…11

𝑥1𝑥2…𝑥𝑛

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑥1𝑥2…𝑥𝑛

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛 requires degree Ω(𝑛).

𝐺𝑇00…00 ≈

Claim 1. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑥 of degree 𝑂(𝑛) that approximates 𝐺𝑇𝑖(𝑥).

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈

O(𝑛)

O(𝑑 𝑛)
𝑝𝑎𝑟𝑖𝑡𝑦 ≈degree

 𝑑

Buhrman and de Wolf’s argument

24

𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00

𝑥1𝑥2…𝑥𝑛

𝑞00…01

𝑥1𝑥2…𝑥𝑛

𝑞11…11

𝑥1𝑥2…𝑥𝑛

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑥1𝑥2…𝑥𝑛

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛 requires degree Ω(𝑛).

𝐺𝑇00…00 ≈

Claim 1. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑥 of degree 𝑂(𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. Every polynomial of 𝑥 that approximates 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛).

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈ Ω(𝑛)

O(𝑛)

O(𝑑 𝑛)
𝑝𝑎𝑟𝑖𝑡𝑦 ≈degree

 𝑑

Our argument

25

𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00

𝑌 𝑥

𝑞00…01

𝑌 𝑥

𝑞11…11

𝑌 𝑥

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑌 𝑥

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛 requires degree Ω(𝑛/ log2 𝑛).

𝐺𝑇00…00 ≈ 𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈

𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) ≈

Our argument

26

𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00

𝑌 𝑥

𝑞00…01

𝑌 𝑥

𝑞11…11

𝑌 𝑥

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑌 𝑥

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛 requires degree Ω(𝑛/ log2 𝑛).

𝐺𝑇00…00 ≈

Claim 1. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of Y(𝑥) of degree 𝑂(log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈

O(log 𝑛)

𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) ≈degree

 𝑑

Our argument

27

𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00

𝑌 𝑥

𝑞00…01

𝑌 𝑥

𝑞11…11

𝑌 𝑥

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑌 𝑥

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛 requires degree Ω(𝑛/ log2 𝑛).

𝐺𝑇00…00 ≈

Claim 1. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑌(𝑥) of degree 𝑂(log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈

O(log 𝑛)

O(𝑑 log 𝑛)
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) ≈degree

 𝑑

Our argument

28

𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00

𝑌 𝑥

𝑞00…01

𝑌 𝑥

𝑞11…11

𝑌 𝑥

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑌 𝑥

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛 requires degree Ω(𝑛/ log2 𝑛).

𝐺𝑇00…00 ≈

Claim 1. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑌(𝑥) of degree 𝑂(log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. Every polynomial of 𝑌(𝑥) that approximates 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈
Ω(

𝑛

log𝑛
)

O(log 𝑛)

O(𝑑 log 𝑛)
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) ≈degree

 𝑑

Our argument

29

𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00

𝑌 𝑟, 𝑥

𝑞00…01

𝑌 𝑟, 𝑥

𝑞11…11

𝑌 𝑟, 𝑥

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑌 𝑟, 𝑥

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛 requires degree Ω(𝑛/ log2 𝑛).

𝐺𝑇00…00 ≈

Claim 1. W.h.p. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑌(𝑟, 𝑥) of degree 𝑂(log𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. W.h.p. every polynomial of 𝑌(𝑟, 𝑥) that approximates 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈
Ω(

𝑛

log𝑛
)

O(log 𝑛)

O(𝑑 log 𝑛)

Sample 𝑟 ← 𝑅

𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) ≈degree

 𝑑

Communication complexity

30

Random
string

𝑎 ∈ 𝐴 𝑏 ∈ 𝐵

𝑓 𝑎, 𝑏

1

0

1

0

How many bits of communication are required?

GT communication problem

31

Random
string

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛

𝐺𝑇 𝑎, 𝑏 = 1 iff 𝑎 > 𝑏
Nisan’93: 𝑂(log𝑛) protocol
Today: 𝑂(log 𝑛 log log 𝑛) protocol

EQ communication problem

32

Random
string

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛

𝐸𝑄 𝑎, 𝑏 = 1 iff 𝑎 = 𝑏

EQ communication protocol

33

Random
string

11 00 10 1111 00 11 10

𝑎,

Equal

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛

Compare to

𝑏,

Only need constant communication for constant error!

Need 𝑂(log log 𝑛) for
1

log 𝑛
= 2− log log 𝑛 error.

GT communication protocol using EQ

34

Random
strings

11 00 10 1111 00 11 10
𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛

GT communication protocol using EQ

35

Random
strings

11 00 10 1111 00 11 10

𝑎,

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛

Compare to

𝑏,

GT communication protocol using EQ

36

Random
strings

11 00 10 1111 00 11 10

𝑎,

Equal

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛

GT communication protocol using EQ

37

Random
strings

11 00 10 1111 00 11 10

𝑎,

Equal

𝑎,

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛

Compare to

𝑏,

GT communication protocol using EQ

38

Random
strings

11 00 10 1111 00 11 10

𝑎,

Equal

𝑎,

Not equal

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛

GT communication protocol using EQ

39

Random
strings

11 00 10 1111 00 11 10

𝑎,

Equal

𝑎,

Not equal

𝑎,

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛

Compare to

𝑏,

GT communication protocol using EQ

40

Random
strings

11 00 10 1111 00 11 10

𝑎,

Equal

𝑎,

Not equal

𝑎,

Not equal

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛

GT communication protocol using EQ

41

Random
strings

11 00 10 1111 00 11 10

𝑎,

Equal

𝑎,

Not equal

𝑎,

Not equal

𝑎, 1

Compare to

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛

𝑏, 1

GT communication protocol using EQ

42

Random
strings

11 00 10 1111 00 11 10

𝑎,

Equal

𝑎,

Not equal

𝑎,

Not equal

𝑎, 1

Compare to

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛

𝑏, 1

Communication
complexity

𝑂(log𝑛 log log 𝑛)

First attempt

43

𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible
partial parities of 𝑥.

First attempt

44

𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible
partial parities of 𝑥.

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

First attempt

45

𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible
partial parities of 𝑥.

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that given 𝑖 (hardcoded) and access to 𝑌(𝑥), outputs
𝐺𝑇𝑖(𝑥) with Pr 2/3 with query complexity 𝑂(log 𝑛 log log 𝑛).

First attempt

46

𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible
partial parities of 𝑥.

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that given 𝑖 (hardcoded) and access to 𝑌(𝑥), outputs
𝐺𝑇𝑖(𝑥) with Pr 2/3 with query complexity 𝑂(log 𝑛 log log 𝑛).

• Every randomized query algorithm converts to a polynomial of the same degree as query
complexity.

First attempt

47

𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible
partial parities of 𝑥.

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that given 𝑖 (hardcoded) and access to 𝑌(𝑥), outputs
𝐺𝑇𝑖(𝑥) with Pr 2/3 with query complexity 𝑂(log 𝑛 log log 𝑛).

• Every randomized query algorithm converts to a polynomial of the same degree as query
complexity.

First attempt

48

𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible
partial parities of 𝑥.

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that given 𝑖 (hardcoded) and access to 𝑌(𝑥), outputs
𝐺𝑇𝑖(𝑥) with Pr 2/3 with query complexity 𝑂(log 𝑛 log log 𝑛).

• Every randomized query algorithm converts to a polynomial of the same degree as query
complexity.

Exists a polynomial of degree 1: 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥 = ⟨1𝑛, 𝑥⟩

First attempt

49

𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible
partial parities of 𝑥.

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that given 𝑖 (hardcoded) and access to 𝑌(𝑥), outputs
𝐺𝑇𝑖(𝑥) with Pr 2/3 with query complexity 𝑂(log 𝑛 log log 𝑛).

• Every randomized query algorithm converts to a polynomial of the same degree as query
complexity.

Exists a polynomial of degree 1: 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥 = ⟨1𝑛, 𝑥⟩

Second attempt

50

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

𝑟 ← 𝑅

The oracle 𝑌 has enough info for one full run of 𝐺𝑇.

Second attempt

51

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

Not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for one full run of 𝐺𝑇.

Second attempt

52

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

Not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for one full run of 𝐺𝑇.

Second attempt

53

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a deterministic algorithm that for all 𝑖, 𝑥 ∈ 0, 1 𝑛 with Pr 2/3 outputs
𝐺𝑇𝑖(𝑥) with query complexity 𝑂(log 𝑛 log log 𝑛).

Not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for one full run of 𝐺𝑇.

Second attempt

54

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a deterministic algorithm that for all 𝑖, 𝑥 ∈ 0, 1 𝑛 with Pr 2/3 outputs
𝐺𝑇𝑖(𝑥) with query complexity 𝑂(log 𝑛 log log 𝑛).

• Wrong order!

Not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for one full run of 𝐺𝑇.

Second attempt

55

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a deterministic algorithm that for all 𝑖, 𝑥 ∈ 0, 1 𝑛 with Pr 2/3 outputs
𝐺𝑇𝑖(𝑥) with query complexity 𝑂(log 𝑛 log log 𝑛).

• Wrong order!

Not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for one full run of 𝐺𝑇.

Final attempt

56

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

𝑟 ← 𝑅

The oracle 𝑌 has enough info for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) full runs of 𝐺𝑇.

Final attempt

57

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

Still not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) full runs of 𝐺𝑇.

Final attempt

58

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

Still not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) full runs of 𝐺𝑇.

Final attempt

59

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that with Pr 2/3 over 𝑟 ← 𝑅 for all 𝑖, 𝑥 ∈ 0, 1 𝑛 outputs
𝐺𝑇𝑖(𝑥) with Pr 2/3 over internal randomness with query complexity 𝑂(log 𝑛 log log 𝑛).

Still not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) full runs of 𝐺𝑇.

Final attempt

60

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that with Pr 2/3 over 𝑟 ← 𝑅 for all 𝑖, 𝑥 ∈ 0, 1 𝑛 outputs
𝐺𝑇𝑖(𝑥) with Pr 2/3 over internal randomness with query complexity 𝑂(log 𝑛 log log 𝑛).

• Every randomized query algorithm converts to a polynomial of the same degree as query
complexity.

Still not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) full runs of 𝐺𝑇.

Final attempt

61

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that with Pr 2/3 over 𝑟 ← 𝑅 for all 𝑖, 𝑥 ∈ 0, 1 𝑛 outputs
𝐺𝑇𝑖(𝑥) with Pr 2/3 over internal randomness with query complexity 𝑂(log 𝑛 log log 𝑛).

• Every randomized query algorithm converts to a polynomial of the same degree as query
complexity.

Still not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) full runs of 𝐺𝑇.

Oracle structure

62

Random bit

Zero

𝛼 = 𝑂(log log 𝑛) copies
𝑌 𝑟, 𝑥

𝑖
= ⟨𝑟𝑖 , 𝑥⟩

𝑟 = 𝑟1, 𝑟2, … , 𝑟𝑚 , 𝑟𝑖 ∈ 0, 1 𝑛

𝑟 ← 𝑅

Updated oracle structure R

63

1

1

1

1

1

1

1

1

Copy 1 Copy 2

…

Copy t

𝑡 = 𝑝𝑜𝑙𝑦(𝑛)

Basis

Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r

64

0 r 1

Copy 1 Copy j

…

Copy t

…

Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication

protocol using inner products
from copy 𝑗

65

11 00 11 10

11 00 10 11

0 r 1

Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication

protocol using inner products
from copy 𝑗

○ Compute ⟨𝑖, ⟩
○ Query ⟨𝑥, ⟩
○ Compare values

66

11 00 11 10

11 00 10 11

0 r 1

Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication

protocol using inner products
from copy 𝑗

○ Compute ⟨𝑖, ⟩
○ Query ⟨𝑥, ⟩
○ Compare values

67

11 00 11 10

11 00 10 11

0 r 1

Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication

protocol using inner products
from copy 𝑗

○ Compute ⟨𝑖, ⟩
○ Query ⟨𝑥, ⟩
○ Compare values

68

11 00 11 10

11 00 10 11

0 r 1

Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication

protocol using inner products
from copy 𝑗

○ Compute ⟨𝑖, ⟩
○ Query ⟨𝑥, ⟩
○ Compare values

69

11 00 11 10

11 00 10 11

0 r 1

Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication

protocol using inner products
from copy 𝑗

○ Compute ⟨𝑖, ⟩
○ Query ⟨𝑥, ⟩
○ Compare values

70

11 00 11 10

11 00 10 11

0 r 1

Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication

protocol using inner products
from copy 𝑗

○ Compute ⟨𝑖, ⟩
○ Query ⟨𝑥, ⟩
○ Compare values

71

11 00 11 10

11 00 10 11

0 r 1

Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication

protocol using inner products
from copy 𝑗

3. Query most significant bit and
compare it to the value in 𝑖

○ Compute ⟨𝑖, ⟩
○ Query ⟨𝑥, ⟩
○ Compare values

72

11 00 11 10

11 00 10 11

0 r 1

Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication

protocol using inner products
from copy 𝑗

3. Query most significant bit and
compare it to the value in 𝑖

○ Compute ⟨𝑖, ⟩
○ Query ⟨𝑥, ⟩
○ Compare values

73

11 00 11 10

11 00 10 11

0 r 1 Query complexity 𝑂(log 𝑛 log log 𝑛)

Upper bound for 𝐺𝑇𝑖

74

Claim 1’. With probability 2/3 over 𝑟 ← 𝑅 u.a.r. for all 𝑖 ∈ 0, 1 𝑛 there exists an algorithm 𝐴𝑖 with
oracle access to 𝑌 𝑟, 𝑥 that compute the corresponding 𝐺𝑇𝑖 with probability 2/3 over internal

randomness and has query complexity at most 𝑂(log 𝑛 log log 𝑛).

Acceptance probability of a randomized T-query algorithm is a polynomial of degree T.

Claim 1. With probability 2/3 over 𝑟 ← 𝑅 u.a.r. for all 𝑖 ∈ 0, 1 𝑛 there exists a polynomial 𝑞𝑖 of 𝑌(𝑟, 𝑥)
that approximate the corresponding 𝐺𝑇𝑖 and has degree at most 𝑂(log 𝑛 log log 𝑛).

⇒

Upper bound for 𝐺𝑇𝑖

75

Claim 1’. With probability 2/3 over 𝑟 ← 𝑅 u.a.r. for all 𝑖 ∈ 0, 1 𝑛 there exists an algorithm 𝐴𝑖 with
oracle access to 𝑌 𝑟, 𝑥 that compute the corresponding 𝐺𝑇𝑖 with probability 2/3 over internal

randomness and has query complexity at most 𝑂(log 𝑛).

Acceptance probability of a randomized T-query algorithm is a polynomial of degree T.

Claim 1. With probability 2/3 over 𝑟 ← 𝑅 u.a.r. for all 𝑖 ∈ 0, 1 𝑛 there exists a polynomial 𝑞𝑖 of 𝑌(𝑟, 𝑥)
that approximate the corresponding 𝐺𝑇𝑖 and has degree at most 𝑂(log 𝑛).

⇒

Lower bound for parity

76

• Generalizes for any 𝑅 with a “good” structure! Ω(
𝑛

log(𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑟𝑎𝑐𝑙𝑒 𝑌)
)

• Works for approximation to any error

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

Lower bound for parity

77

• Proof idea 1: We consider polynomials over {−1, 1} instead of {0, 1}
• Proof idea 2: All monomials of degree < 𝑛 are orthogonal to parity in {−1, 1}

basis.

• Proof idea 3: Getting a monomial of 𝑥 of degree 𝑛 by multiplying
𝑛

log 𝑛
 bits of

𝑌(𝑟, 𝑥) is improbable.

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

Lower bound for parity: key lemma

78

Index ∈ 𝑛 : 21 43 65 87

1

2

1

2

1

2

1

2
01 01

2

𝑟

 𝑟𝑖, 1 = 1 :

𝑇, 𝑇 ≤
𝑛

log 𝑛

Getting the all-ones string by taking bit-wise
XOR of 𝑛

log 𝑛
 strings from a sample 𝑟 ← 𝑅 is

improbable over the choice of 𝑟.

Final result for OS

79

𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00

𝑌 𝑟, 𝑥

𝑞00…01

𝑌 𝑟, 𝑥

𝑞11…11

𝑌 𝑟, 𝑥

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑌 𝑟, 𝑥

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛 requires degree Ω(𝑛/ log2 𝑛).

𝐺𝑇00…00 ≈

Claim 1. W.h.p. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑌(𝑟, 𝑥) of degree 𝑂(log𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. W.h.p. Every polynomial of 𝑌(𝑟, 𝑥) that approximates 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈
Ω(

𝑛

log𝑛
)

O(log 𝑛)

O(𝑑 log 𝑛)

Sample 𝑟 ← 𝑅

𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) ≈degree

 𝑑

Summary
• New (and almost tight) lower bound for approximate degree of Ordered search: Ω(𝑛/ log2 𝑛)

• Generalizable to unbounded error regime: Ω(
𝑛

log2 𝑛
− log

1

𝛾
)

• Same lower bounds for Hidden string problem using the same approach

• As a corollary, lower bounds on quantum query complexity of decision versions

• New framework for lower bounds on oracle identification problems

80

Open problems:
• Using the easiness of one problem in the presence of additional information to prove the hardness

of another
• Using this framework for other open problems
• Using this framework in other settings: circuit complexity, proof complexity, massive parallel

computation model, …
• Closing the gap for ordered search and hidden string: Ω(𝑛/ log2 𝑛) and 𝑂(𝑛)

Summary
• New (and almost tight) lower bound for approximate degree of Ordered search: Ω(𝑛/ log2 𝑛)

• Generalizable to unbounded error regime: Ω(
𝑛

log2 𝑛
− log

1

𝛾
)

• Same lower bounds for Hidden string problem using the same approach

• As a corollary, lower bounds on quantum query complexity of decision versions

• New framework for lower bounds on oracle identification problems

81

Open problems:
• Using the easiness of one problem in the presence of additional information to prove the hardness

of another
• Using this framework for other open problems
• Using this framework in other settings: circuit complexity, proof complexity, massive parallel

computation model, …
• Closing the gap for ordered search and hidden string: Ω(𝑛/ log2 𝑛) and 𝑂(𝑛)

Thank you!

	Slide 1: Approximate degree lower bounds for oracle identification problems
	Slide 2: Query model
	Slide 3: Resources in query model: example
	Slide 4: Resources in query model: example
	Slide 5: Approximate degree
	Slide 6: Applications of open paren d e g close paren tilde
	Slide 7: Polynomial method
	Slide 8: Polynomial method
	Slide 9: Polynomial method
	Slide 10: Problems
	Slide 11: Problems
	Slide 12: Problems
	Slide 13: Problems
	Slide 14: Problems
	Slide 15: Results: state-of-the-art
	Slide 16: Results: bounded error
	Slide 17: Results: unbounded error
	Slide 18: Problems
	Slide 19: Buhrman and de Wolf’s argument
	Slide 20: Buhrman and de Wolf’s argument
	Slide 21: Buhrman and de Wolf’s argument
	Slide 22: Buhrman and de Wolf’s argument
	Slide 23: Buhrman and de Wolf’s argument
	Slide 24: Buhrman and de Wolf’s argument
	Slide 25: Our argument
	Slide 26: Our argument
	Slide 27: Our argument
	Slide 28: Our argument
	Slide 29: Our argument
	Slide 30: Communication complexity
	Slide 31: GT communication problem
	Slide 32: EQ communication problem
	Slide 33: EQ communication protocol
	Slide 34: GT communication protocol using EQ
	Slide 35: GT communication protocol using EQ
	Slide 36: GT communication protocol using EQ
	Slide 37: GT communication protocol using EQ
	Slide 38: GT communication protocol using EQ
	Slide 39: GT communication protocol using EQ
	Slide 40: GT communication protocol using EQ
	Slide 41: GT communication protocol using EQ
	Slide 42: GT communication protocol using EQ
	Slide 43: First attempt
	Slide 44: First attempt
	Slide 45: First attempt
	Slide 46: First attempt
	Slide 47: First attempt
	Slide 48: First attempt
	Slide 49: First attempt
	Slide 50: Second attempt
	Slide 51: Second attempt
	Slide 52: Second attempt
	Slide 53: Second attempt
	Slide 54: Second attempt
	Slide 55: Second attempt
	Slide 56: Final attempt
	Slide 57: Final attempt
	Slide 58: Final attempt
	Slide 59: Final attempt
	Slide 60: Final attempt
	Slide 61: Final attempt
	Slide 62: Oracle structure
	Slide 63: Updated oracle structure R
	Slide 64: Query algorithm for cap G cap T sub i.
	Slide 65: Query algorithm for cap G cap T sub i.
	Slide 66: Query algorithm for cap G cap T sub i.
	Slide 67: Query algorithm for cap G cap T sub i.
	Slide 68: Query algorithm for cap G cap T sub i.
	Slide 69: Query algorithm for cap G cap T sub i.
	Slide 70: Query algorithm for cap G cap T sub i.
	Slide 71: Query algorithm for cap G cap T sub i.
	Slide 72: Query algorithm for cap G cap T sub i.
	Slide 73: Query algorithm for cap G cap T sub i.
	Slide 74: Upper bound for cap G cap T sub i.
	Slide 75: Upper bound for cap G cap T sub i.
	Slide 76: Lower bound for parity
	Slide 77: Lower bound for parity
	Slide 78: Lower bound for parity: key lemma
	Slide 79: Final result for OS
	Slide 80: Summary
	Slide 81: Summary

