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Query model

Why consider?

● Strips away implementation details.

● Can prove unconditional lower bounds!
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Given: oracle (black box) access to 𝑥 ∈ 0, 1 𝑛

Goal: compute 𝑓 𝑥
Cost: # of queries

𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ [𝑛] 𝑥𝑖

𝑓(𝑥)



Resources in query model: example
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𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ [𝑛] 𝑥𝑖

𝑂𝑅(𝑥)

Types of queries:
● Deterministic

● No additional resources 
● Without error
● Computing 𝑂𝑅 requires Θ(𝑛) queries

● Randomized
● Access to unbiased random bits
● Correct with success Pr ⅔ 
● Computing 𝑂𝑅 requires Θ(𝑛) queries

● Quantum : Θ( 𝑛)
● Query in superposition
● Correct with success Pr ⅔
● Computing 𝑂𝑅 requires Θ( 𝑛) queries



Resources in query model: example
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𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ [𝑛] 𝑥𝑖

𝑂𝑅(𝑥)

Types of queries:
● Deterministic

● No additional resources 
● Without error
● Computing 𝑂𝑅 requires Θ(𝑛) queries

● Randomized
● Access to unbiased random bits
● Correct with success Pr ⅔ 
● Computing 𝑂𝑅 requires Θ(𝑛) queries

● Quantum : Θ( 𝑛)
● Query in superposition
● Correct with success Pr ⅔
● Computing 𝑂𝑅 requires Θ( 𝑛) queries

Bounded error: success 
probability ⅔

Unbounded error: better 
than random guessing



Approximate degree
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Let 𝑓:𝐷 → 0,1 where 𝐷 ⊆ 0, 1 𝑛 .

A polynomial 𝑝: 0, 1 𝑛 → ℝ is 𝜀-approximation to 𝑓 if 
• −𝜀 ≤ 𝑝 𝑥 ≤ 1 + 𝜀 for all 𝑥 ∈ 0, 1 𝑛

• 𝑝 𝑥 − 𝑓 𝑥 ≤ 𝜀 for all 𝑥 ∈ 𝐷

Approximate degree ෪𝑑𝑒𝑔𝜀 𝑓 of 𝒇 is the least degree of a polynomial that 𝜀-
approximates 𝑓.

Default error 𝜀 =
1

3

Corresponds to bounded error query model



Applications of ෪𝑑𝑒𝑔
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Upper bounds:

• Learning Algorithms 
[Klivans-Servedio03, Klivans-Servedio06, Kalai-Klivans-Mansour-

Servedio06]

• Approximate Inclusion-Exclusion 
[Kahn-Linial-Samorodnitsky96, Sherstov08]

• Differentially Private Query Release 
[Thaler-Ullman-Vadhan12, Chandrasekaran-Thaler-Ullman-Wan14]

• Formula & Graph Complexity Lower 

Bounds [Tal14,16ab]

Lower bounds:

• Communication Complexity 
[Sherstov07, Shi-Zhu07, Chattopadhyay-Ada08, Lee-Shraibman08,...]

• Circuit Complexity 
[Minsky-Papert69, Beigel93, Sherstov08]

• Oracle Separations 
[Beigel94, Bouland-Chen-Holden-Thaler-Vasudevan16]

• Secret Sharing Schemes 
[Bogdanov-Ishai-Viola-Williamson16]

• Quantum query complexity



Polynomial method
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Acceptance probability of a randomized T-query algorithm is a polynomial of degree T.

The 𝜀-approximate degree of a function is always at most its randomized query 
complexity with error 𝜀.



Polynomial method
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Acceptance probability of a quantum T-query algorithm is a polynomial of degree 2T.

The 𝜀-approximate degree of a function is always at most ½ its quantum query 
complexity with error 𝜀.



Polynomial method
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Acceptance probability of a quantum T-query algorithm is a polynomial of degree 2T.

Advantages
• Robust. 

• Lifts to quantum communication [She11], 
• Can yield lower bounds against zero-, small-, and 

unbounded-error quantum algorithms [BBC+01, 

BCdWZ99],
• Gives time-space tradeoffs [KSdW07]

• Transparent in identifying the hardness
• Search vs decision problem
• Can be more intuitive than some other methods

Other ways to prove lower bounds: 
“adversary” methods

• “Positive-weights” method [Ambainis02] 
• Easy to apply, but limited in 

power 
• “Negative-weights” method [Høyer-Lee-

Špalek07, ..., Reichardt11]

• Tight characterization, but 
difficult to apply

The 𝜀-approximate degree of a function is always at most ½ its quantum query 
complexity with error 𝜀.



Problems
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Ordered search 𝑶𝑺𝟐𝒏

Given: string 0𝑥1𝑁−𝑥, 𝑁 = 2𝑛

Output: 𝑥

Hidden string

Given: collection of bits 𝜏𝑠(𝑥), where
𝜏𝑠 𝑥 = 1 iff 𝑠 is a substring of hidden 𝑥
Output: 𝑥



Problems
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𝑥 ∈ 0, 1 𝑛

Algorithm

𝑠 ∈ 0, 1 ≤𝑛 𝜏𝑠(𝑥)

𝑥

Ordered search 𝑶𝑺𝟐𝒏

Given: string 0𝑥1𝑁−𝑥, 𝑁 = 2𝑛

Output: 𝑥

Hidden string

Given: collection of bits 𝜏𝑠(𝑥), where
𝜏𝑠 𝑥 = 1 iff 𝑠 is a substring of hidden 𝑥
Output: 𝑥



Problems
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𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ 0, 1 𝑛 𝐺𝑇𝑖(𝑥)

𝑥

Ordered search 𝑶𝑺𝟐𝒏

Given: string 0𝑥1𝑁−𝑥, 𝑁 = 2𝑛

Output: 𝑥

Hidden string

Given: collection of bits 𝜏𝑠(𝑥), where
𝜏𝑠 𝑥 = 1 iff 𝑠 is a substring of hidden 𝑥
Output: 𝑥



Problems
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𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ 𝑄 𝑎𝑖(𝑥)

𝑥

Ordered search 𝑶𝑺𝟐𝒏

Given: string 0𝑥1𝑁−𝑥, 𝑁 = 2𝑛

Output: 𝑥

Hidden string

Given: collection of bits 𝜏𝑠(𝑥), where
𝜏𝑠 𝑥 = 1 iff 𝑠 is a substring of hidden 𝑥
Output: 𝑥



Problems
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𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ 𝑄 𝑎𝑖(𝑥)

𝑝𝑎𝑟𝑖𝑡𝑦(𝑥)

Ordered search 𝑶𝑺𝟐𝒏

Given: string 0𝑥1𝑁−𝑥, 𝑁 = 2𝑛

Output: 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥)

Hidden string

Given: collection of bits 𝜏𝑠(𝑥), where
𝜏𝑠 𝑥 = 1 iff 𝑠 is a substring of hidden 𝑥
Output: 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥)



Results: state-of-the-art
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Ordered Search 𝑂𝑆2𝑛 Hidden String

Approximate degree,
Quantum query complexity for 
decision problem

𝑂 𝑛 ,Ω( 𝑛) [BdW99]

This work: Ω(𝑛/ log2 𝑛)
𝑂 𝑛 [SS95][CIG+12]

This work: Ω(𝑛/ log2 𝑛)

Quantum query complexity for 
reconstruction problem

Θ(𝑛) 
[BdW99, FGGS98, Amb99, HNS02, CL08]

𝑂 𝑛 [SS95], Ω(𝑛/ log2 𝑛) [CIG+12]

This work: Ω(𝑛/ log2 𝑛)



Results: bounded error
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Ordered Search 𝑂𝑆2𝑛 Hidden String

Approximate degree,
Quantum query complexity for 
decision problem

𝑂 𝑛 ,Ω( 𝑛) [BdW99]

This work: Ω(𝑛/ log2 𝑛)
𝑂 𝑛 [SS95][CIG+12]

This work: Ω(𝑛/ log2 𝑛)

Quantum query complexity for 
reconstruction problem

Θ(𝑛) 
[BdW99, FGGS98, Amb99, HNS02, CL08]

𝑂 𝑛 [SS95], Ω(𝑛/ log2 𝑛) [CIG+12]

This work: Ω(𝑛/ log2 𝑛)



Results: unbounded error
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Ordered Search 𝑂𝑆2𝑛 Hidden String

Approximate degree,
Quantum query complexity for 
decision problem

Success pr
1

2
+ 𝛾

𝑂 𝑛 − log
1

𝛾
, Ω( 𝑛 − log

1

𝛾
 )

[BdW99]

This work: Ω(
𝑛

log2 𝑛
 − log

1

𝛾
)

𝑂 𝑛 [SS95] [CIG+12]

This work:Ω(
𝑛

log2 𝑛
 − log

1

𝛾
)

Quantum query complexity for 
reconstruction problem
Success pr 𝛾

Θ(𝑛 − log
1

𝛾
) [Implicit in Amb99] 𝑂 𝑛 − log

1

𝛾
[SS95], 

Ω(𝛾2
𝑛

log2 𝑛
) [CIG+12]

This work: Ω(
𝑛

log2 𝑛
− log

1

𝛾
)

• All results in this work were achieved using the same framework.



Problems
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Ordered search 𝑶𝑺𝟐𝒏

Given: string 0𝑥1𝑁−𝑥, 𝑁 = 2𝑛

Output: 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥)

Hidden string

Given: collection of bits 𝜏𝑠(𝑥), where
𝜏𝑠 𝑥 = 1 iff 𝑠 is a substring of hidden 𝑥
Output: 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥)

𝑥 ∈ 0, 1 𝑛

Algorithm

𝑖 ∈ 0, 1 𝑛 𝐺𝑇𝑖(𝑥)

𝑝𝑎𝑟𝑖𝑡𝑦(𝑥)



Buhrman and de Wolf’s argument

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛  requires degree Ω( 𝑛). 



Buhrman and de Wolf’s argument

20

𝑂𝑆2𝑛 ≈ 𝑝

𝐺𝑇00…00 

𝑥1𝑥2…𝑥𝑛

𝐺𝑇00…01

𝑥1𝑥2…𝑥𝑛

𝐺𝑇11…11

𝑥1𝑥2…𝑥𝑛

…

𝑝𝑎𝑟𝑖𝑡𝑦

𝑥1𝑥2…𝑥𝑛

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛  requires degree Ω( 𝑛). 



Buhrman and de Wolf’s argument
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𝑂𝑆2𝑛 ≈ 𝑝

𝐺𝑇00…00 

𝑥1𝑥2…𝑥𝑛

𝐺𝑇00…01

𝑥1𝑥2…𝑥𝑛

𝐺𝑇11…11

𝑥1𝑥2…𝑥𝑛

…

𝑝𝑎𝑟𝑖𝑡𝑦

𝑥1𝑥2…𝑥𝑛

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛  requires degree Ω( 𝑛). 

degree

 𝑑



Buhrman and de Wolf’s argument
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𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00 

𝑥1𝑥2…𝑥𝑛

𝑞00…01

𝑥1𝑥2…𝑥𝑛

𝑞11…11

𝑥1𝑥2…𝑥𝑛

…

𝑝𝑎𝑟𝑖𝑡𝑦

𝑥1𝑥2…𝑥𝑛

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛  requires degree Ω( 𝑛). 

𝐺𝑇00…00 ≈

Claim 1. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑥 of degree 𝑂( 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈

O( 𝑛)

degree

 𝑑



Buhrman and de Wolf’s argument
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𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00 

𝑥1𝑥2…𝑥𝑛

𝑞00…01

𝑥1𝑥2…𝑥𝑛

𝑞11…11

𝑥1𝑥2…𝑥𝑛

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑥1𝑥2…𝑥𝑛

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛  requires degree Ω( 𝑛). 

𝐺𝑇00…00 ≈

Claim 1. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑥 of degree 𝑂( 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈

O( 𝑛)

O(𝑑 𝑛)
𝑝𝑎𝑟𝑖𝑡𝑦 ≈degree

 𝑑



Buhrman and de Wolf’s argument
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𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00 

𝑥1𝑥2…𝑥𝑛

𝑞00…01

𝑥1𝑥2…𝑥𝑛

𝑞11…11

𝑥1𝑥2…𝑥𝑛

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑥1𝑥2…𝑥𝑛

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛  requires degree Ω( 𝑛). 

𝐺𝑇00…00 ≈

Claim 1. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑥 of degree 𝑂( 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. Every polynomial of 𝑥 that approximates 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛).

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈ Ω(𝑛)

O( 𝑛)

O(𝑑 𝑛)
𝑝𝑎𝑟𝑖𝑡𝑦 ≈degree

 𝑑



Our argument
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𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00 

𝑌 𝑥  

𝑞00…01

𝑌 𝑥  

𝑞11…11

𝑌 𝑥  

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑌 𝑥  

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛  requires degree Ω(𝑛/ log2 𝑛). 

𝐺𝑇00…00 ≈ 𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈

𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) ≈



Our argument
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𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00 

𝑌 𝑥  

𝑞00…01

𝑌 𝑥  

𝑞11…11

𝑌 𝑥  

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑌 𝑥  

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛  requires degree Ω(𝑛/ log2 𝑛). 

𝐺𝑇00…00 ≈

Claim 1. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of Y(𝑥) of degree 𝑂(log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈

O(log 𝑛)

𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) ≈degree

 𝑑



Our argument
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𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00 

𝑌 𝑥  

𝑞00…01

𝑌 𝑥  

𝑞11…11

𝑌 𝑥  

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑌 𝑥  

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛  requires degree Ω(𝑛/ log2 𝑛). 

𝐺𝑇00…00 ≈

Claim 1. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑌(𝑥) of degree 𝑂(log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈

O(log 𝑛)

O(𝑑 log 𝑛)
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) ≈degree

 𝑑



Our argument
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𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00 

𝑌 𝑥  

𝑞00…01

𝑌 𝑥  

𝑞11…11

𝑌 𝑥  

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑌 𝑥  

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛  requires degree Ω(𝑛/ log2 𝑛). 

𝐺𝑇00…00 ≈

Claim 1. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑌(𝑥) of degree 𝑂(log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. Every polynomial of 𝑌(𝑥) that approximates 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈
Ω(

𝑛

log𝑛
)

O(log 𝑛)

O(𝑑 log 𝑛)
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) ≈degree

 𝑑



Our argument
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𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00 

𝑌 𝑟, 𝑥  

𝑞00…01

𝑌 𝑟, 𝑥  

𝑞11…11

𝑌 𝑟, 𝑥  

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑌 𝑟, 𝑥  

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛  requires degree Ω(𝑛/ log2 𝑛). 

𝐺𝑇00…00 ≈

Claim 1. W.h.p. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑌(𝑟, 𝑥) of degree 𝑂(log𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. W.h.p. every polynomial of 𝑌(𝑟, 𝑥) that approximates 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈
Ω(

𝑛

log𝑛
)

O(log 𝑛)

O(𝑑 log 𝑛)

Sample 𝑟 ← 𝑅

𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) ≈degree

 𝑑



Communication complexity
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Random 
string

𝑎 ∈ 𝐴 𝑏 ∈ 𝐵 

𝑓 𝑎, 𝑏

1

0

1

0

How many bits of communication are required?



GT communication problem
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Random 
string

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛 

𝐺𝑇 𝑎, 𝑏 = 1 iff 𝑎 > 𝑏
Nisan’93: 𝑂(log𝑛) protocol
Today: 𝑂(log 𝑛 log log 𝑛) protocol



EQ communication problem
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Random 
string

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛 

𝐸𝑄 𝑎, 𝑏 = 1 iff 𝑎 = 𝑏



EQ communication protocol
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Random 
string

11 00 10 1111 00 11 10

𝑎, 

Equal

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛 

Compare to

𝑏, 

Only need constant communication for constant error!

Need 𝑂(log log 𝑛) for 
1

log 𝑛
= 2− log log 𝑛 error.



GT communication protocol using EQ

34

Random 
strings

11 00 10 1111 00 11 10
𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛 



GT communication protocol using EQ
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Random 
strings

11 00 10 1111 00 11 10

𝑎, 

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛 

Compare to

𝑏, 



GT communication protocol using EQ
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Random 
strings

11 00 10 1111 00 11 10

𝑎, 

Equal

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛 



GT communication protocol using EQ
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Random 
strings

11 00 10 1111 00 11 10

𝑎, 

Equal

𝑎, 

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛 

Compare to

𝑏, 



GT communication protocol using EQ
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Random 
strings

11 00 10 1111 00 11 10

𝑎, 

Equal

𝑎, 

Not equal

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛 
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Random 
strings

11 00 10 1111 00 11 10

𝑎, 

Equal

𝑎, 

Not equal

𝑎, 

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛 

Compare to

𝑏, 
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Random 
strings

11 00 10 1111 00 11 10

𝑎, 

Equal

𝑎, 

Not equal

𝑎, 

Not equal

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛 
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Random 
strings

11 00 10 1111 00 11 10

𝑎, 

Equal

𝑎, 

Not equal

𝑎, 

Not equal

𝑎, 1

Compare to

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛 

𝑏, 1
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Random 
strings

11 00 10 1111 00 11 10

𝑎, 

Equal

𝑎, 

Not equal

𝑎, 

Not equal

𝑎, 1

Compare to

𝑎 ∈ 0, 1 𝑛 𝑏 ∈ 0, 1 𝑛 

𝑏, 1

Communication 
complexity

𝑂(log𝑛 log log 𝑛)
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𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible 
partial parities of 𝑥.
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𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible 
partial parities of 𝑥.

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).
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𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible 
partial parities of 𝑥.

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that given 𝑖 (hardcoded) and access to 𝑌(𝑥), outputs 
𝐺𝑇𝑖(𝑥) with Pr 2/3 with query complexity 𝑂(log 𝑛 log log 𝑛).
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𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible 
partial parities of 𝑥.

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that given 𝑖 (hardcoded) and access to 𝑌(𝑥), outputs 
𝐺𝑇𝑖(𝑥) with Pr 2/3 with query complexity 𝑂(log 𝑛 log log 𝑛).

• Every randomized query algorithm converts to a polynomial of the same degree as query 
complexity.



First attempt
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𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible 
partial parities of 𝑥.

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that given 𝑖 (hardcoded) and access to 𝑌(𝑥), outputs 
𝐺𝑇𝑖(𝑥) with Pr 2/3 with query complexity 𝑂(log 𝑛 log log 𝑛).

• Every randomized query algorithm converts to a polynomial of the same degree as query 
complexity.
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𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible 
partial parities of 𝑥.

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that given 𝑖 (hardcoded) and access to 𝑌(𝑥), outputs 
𝐺𝑇𝑖(𝑥) with Pr 2/3 with query complexity 𝑂(log 𝑛 log log 𝑛).

• Every randomized query algorithm converts to a polynomial of the same degree as query 
complexity.

Exists a polynomial of degree 1: 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥 = ⟨1𝑛, 𝑥⟩ 
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𝑌 𝑥 = 𝑟′, 𝑥 𝑟′∈ 0,1 𝑛 The oracle 𝑌 contains all the possible 
partial parities of 𝑥.

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that given 𝑖 (hardcoded) and access to 𝑌(𝑥), outputs 
𝐺𝑇𝑖(𝑥) with Pr 2/3 with query complexity 𝑂(log 𝑛 log log 𝑛).

• Every randomized query algorithm converts to a polynomial of the same degree as query 
complexity.

Exists a polynomial of degree 1: 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥 = ⟨1𝑛, 𝑥⟩ 
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𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

𝑟 ← 𝑅

The oracle 𝑌 has enough info for one full run of 𝐺𝑇.
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𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

Not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for one full run of 𝐺𝑇.



Second attempt
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𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

Not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for one full run of 𝐺𝑇.
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𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a deterministic algorithm that for all 𝑖, 𝑥 ∈ 0, 1 𝑛 with Pr 2/3 outputs 
𝐺𝑇𝑖(𝑥) with query complexity 𝑂(log 𝑛 log log 𝑛).

Not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for one full run of 𝐺𝑇.
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𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a deterministic algorithm that for all 𝑖, 𝑥 ∈ 0, 1 𝑛 with Pr 2/3 outputs 
𝐺𝑇𝑖(𝑥) with query complexity 𝑂(log 𝑛 log log 𝑛).

• Wrong order!

Not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for one full run of 𝐺𝑇.
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𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a deterministic algorithm that for all 𝑖, 𝑥 ∈ 0, 1 𝑛 with Pr 2/3 outputs 
𝐺𝑇𝑖(𝑥) with query complexity 𝑂(log 𝑛 log log 𝑛).

• Wrong order!

Not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for one full run of 𝐺𝑇.



Final attempt
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𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

𝑟 ← 𝑅

The oracle 𝑌 has enough info for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) full runs of 𝐺𝑇.



Final attempt

57

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

Still not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) full runs of 𝐺𝑇.



Final attempt
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𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

Still not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) full runs of 𝐺𝑇.



Final attempt
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𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that with Pr 2/3 over 𝑟 ← 𝑅 for all 𝑖, 𝑥 ∈ 0, 1 𝑛 outputs 
𝐺𝑇𝑖(𝑥) with Pr 2/3 over internal randomness with query complexity 𝑂(log 𝑛 log log 𝑛).

Still not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) full runs of 𝐺𝑇.
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60

𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that with Pr 2/3 over 𝑟 ← 𝑅 for all 𝑖, 𝑥 ∈ 0, 1 𝑛 outputs 
𝐺𝑇𝑖(𝑥) with Pr 2/3 over internal randomness with query complexity 𝑂(log 𝑛 log log 𝑛).

• Every randomized query algorithm converts to a polynomial of the same degree as query 
complexity.

Still not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) full runs of 𝐺𝑇.



Final attempt
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𝑌 𝑟, 𝑥 = 𝑟′, 𝑥 𝑟′∈𝑟

Claim 1. With probability 2/3 over the choice of 𝑟 ← 𝑅 for each 𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 
𝑌(𝑟, 𝑥) of degree 𝑂(log 𝑛 log log 𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

• There exists a randomized algorithm that with Pr 2/3 over 𝑟 ← 𝑅 for all 𝑖, 𝑥 ∈ 0, 1 𝑛 outputs 
𝐺𝑇𝑖(𝑥) with Pr 2/3 over internal randomness with query complexity 𝑂(log 𝑛 log log 𝑛).

• Every randomized query algorithm converts to a polynomial of the same degree as query 
complexity.

Still not enough information to reconstruct 𝑝𝑎𝑟𝑖𝑡𝑦 𝑥

𝑟 ← 𝑅

The oracle 𝑌 has enough info for 𝑡 = 𝑝𝑜𝑙𝑦(𝑛) full runs of 𝐺𝑇.



Oracle structure
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Random bit

Zero

𝛼 = 𝑂(log log 𝑛) copies
𝑌 𝑟, 𝑥

𝑖
= ⟨𝑟𝑖 , 𝑥⟩

𝑟 = 𝑟1, 𝑟2, … , 𝑟𝑚 , 𝑟𝑖 ∈ 0, 1 𝑛

𝑟 ← 𝑅



Updated oracle structure R
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1

1

1

1

1

1

1

1

Copy 1 Copy 2

…

Copy t

𝑡 = 𝑝𝑜𝑙𝑦(𝑛)

Basis



Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r

64

0 r 1

Copy 1 Copy j

…

Copy t

…



Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication 

protocol using inner products 
from copy 𝑗
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Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication 

protocol using inner products 
from copy 𝑗

○ Compute ⟨𝑖,                             ⟩
○ Query     ⟨𝑥,                             ⟩
○ Compare values
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Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication 

protocol using inner products 
from copy 𝑗

○ Compute ⟨𝑖,                             ⟩
○ Query     ⟨𝑥,                             ⟩
○ Compare values
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Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication 

protocol using inner products 
from copy 𝑗

○ Compute ⟨𝑖,                             ⟩
○ Query     ⟨𝑥,                             ⟩
○ Compare values
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Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication 

protocol using inner products 
from copy 𝑗

○ Compute ⟨𝑖,                             ⟩
○ Query     ⟨𝑥,                             ⟩
○ Compare values
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Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication 

protocol using inner products 
from copy 𝑗

○ Compute ⟨𝑖,                             ⟩
○ Query     ⟨𝑥,                             ⟩
○ Compare values
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Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication 

protocol using inner products 
from copy 𝑗

○ Compute ⟨𝑖,                             ⟩
○ Query     ⟨𝑥,                             ⟩
○ Compare values
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Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication 

protocol using inner products 
from copy 𝑗

3. Query most significant bit and 
compare it to the value in 𝑖

○ Compute ⟨𝑖,                             ⟩
○ Query     ⟨𝑥,                             ⟩
○ Compare values
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Query algorithm for 𝐺𝑇𝑖
Input: oracle access to 𝑌 𝑟, 𝑥

1. Sample 𝑗 ← [𝑡] u.a.r
2. Simulate communication 

protocol using inner products 
from copy 𝑗

3. Query most significant bit and 
compare it to the value in 𝑖

○ Compute ⟨𝑖,                             ⟩
○ Query     ⟨𝑥,                             ⟩
○ Compare values
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Upper bound for 𝐺𝑇𝑖
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Claim 1’. With probability 2/3 over 𝑟 ← 𝑅 u.a.r. for all 𝑖 ∈ 0, 1 𝑛 there exists an algorithm 𝐴𝑖  with 
oracle access to 𝑌 𝑟, 𝑥  that compute the corresponding 𝐺𝑇𝑖  with probability 2/3 over internal 

randomness and has query complexity at most 𝑂(log 𝑛 log log 𝑛).

Acceptance probability of a randomized T-query algorithm is a polynomial of degree T.

Claim 1. With probability 2/3 over 𝑟 ← 𝑅 u.a.r. for all 𝑖 ∈ 0, 1 𝑛 there exists a polynomial 𝑞𝑖  of 𝑌(𝑟, 𝑥) 
that approximate the corresponding 𝐺𝑇𝑖 and has degree at most 𝑂(log 𝑛 log log 𝑛).

⇒



Upper bound for 𝐺𝑇𝑖
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Claim 1’. With probability 2/3 over 𝑟 ← 𝑅 u.a.r. for all 𝑖 ∈ 0, 1 𝑛 there exists an algorithm 𝐴𝑖  with 
oracle access to 𝑌 𝑟, 𝑥  that compute the corresponding 𝐺𝑇𝑖  with probability 2/3 over internal 

randomness and has query complexity at most 𝑂(log 𝑛).

Acceptance probability of a randomized T-query algorithm is a polynomial of degree T.

Claim 1. With probability 2/3 over 𝑟 ← 𝑅 u.a.r. for all 𝑖 ∈ 0, 1 𝑛 there exists a polynomial 𝑞𝑖  of 𝑌(𝑟, 𝑥) 
that approximate the corresponding 𝐺𝑇𝑖 and has degree at most 𝑂(log 𝑛).

⇒



Lower bound for parity
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• Generalizes for any 𝑅 with a “good” structure! Ω(
𝑛

log(𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑟𝑎𝑐𝑙𝑒 𝑌)
)

• Works for approximation to any error

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).



Lower bound for parity
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• Proof idea 1: We consider polynomials over {−1, 1} instead of {0, 1}
• Proof idea 2: All monomials of degree < 𝑛 are orthogonal to parity in {−1, 1} 

basis.

• Proof idea 3: Getting a monomial of 𝑥 of degree 𝑛 by multiplying 
𝑛

log 𝑛
 bits of 

𝑌(𝑟, 𝑥) is improbable.

Claim 2. With probability 2/3 over the choice of 𝑟 ← 𝑅 every polynomial of 𝑌(𝑟, 𝑥) that approximates 
𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).



Lower bound for parity: key lemma

78

Index  ∈ 𝑛 : 21 43 65 87

1

2

1

2

1

2

1

2
01 01

2
  
𝑟

  𝑟𝑖, 1 = 1 :

𝑇, 𝑇 ≤
𝑛

log 𝑛

Getting the all-ones string by taking bit-wise 
XOR of 𝑛

log 𝑛
 strings from a sample 𝑟 ← 𝑅 is 

improbable over the choice of 𝑟.



Final result for OS
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𝑂𝑆2𝑛 ≈ 𝑝

𝑞00…00 

𝑌 𝑟, 𝑥  

𝑞00…01

𝑌 𝑟, 𝑥  

𝑞11…11

𝑌 𝑟, 𝑥  

…

𝑝 ∘ 𝑞𝑖∈ 0,1 𝑛

𝑌 𝑟, 𝑥  

=

Theorem. Every polynomial that approximates 𝑂𝑆2𝑛  requires degree Ω(𝑛/ log2 𝑛). 

𝐺𝑇00…00 ≈

Claim 1. W.h.p. ∀𝑖 ∈ 0, 1 𝑛 there exists a polynomial of 𝑌(𝑟, 𝑥) of degree 𝑂(log𝑛) that approximates 𝐺𝑇𝑖(𝑥).

Claim 2. W.h.p. Every polynomial of 𝑌(𝑟, 𝑥) that approximates 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) requires degree Ω(𝑛/ log 𝑛).

[She12] Every polynomial can be made robust to constant noise with constant blowup in degree.

𝐺𝑇00…01 ≈ 𝐺𝑇11…11 ≈
Ω(

𝑛

log𝑛
)

O(log 𝑛)

O(𝑑 log 𝑛)

Sample 𝑟 ← 𝑅

𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) ≈degree

 𝑑



Summary
• New (and almost tight) lower bound for approximate degree of Ordered search: Ω(𝑛/ log2 𝑛)

• Generalizable to unbounded error regime: Ω(
𝑛

log2 𝑛
− log

1

𝛾
)

• Same lower bounds for Hidden string problem using the same approach

• As a corollary, lower bounds on quantum query complexity of decision versions

• New framework for lower bounds on oracle identification problems

80

Open problems:
• Using the easiness of one problem in the presence of additional information to prove the hardness 

of another
• Using this framework for other open problems
• Using this framework in other settings: circuit complexity, proof complexity, massive parallel 

computation model, … 
• Closing the gap for ordered search and hidden string: Ω(𝑛/ log2 𝑛) and 𝑂(𝑛)



Summary
• New (and almost tight) lower bound for approximate degree of Ordered search: Ω(𝑛/ log2 𝑛)

• Generalizable to unbounded error regime: Ω(
𝑛

log2 𝑛
− log

1

𝛾
)

• Same lower bounds for Hidden string problem using the same approach

• As a corollary, lower bounds on quantum query complexity of decision versions

• New framework for lower bounds on oracle identification problems
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Open problems:
• Using the easiness of one problem in the presence of additional information to prove the hardness 

of another
• Using this framework for other open problems
• Using this framework in other settings: circuit complexity, proof complexity, massive parallel 

computation model, … 
• Closing the gap for ordered search and hidden string: Ω(𝑛/ log2 𝑛) and 𝑂(𝑛)

Thank you!
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