Approximate degree lower bounds
for oracle identification problems

Mark Bun, Nadezhda Voronova
Boston University

Query model

. x € {0, 1}"
Given: oracle (black box) access to x € {0, 1}" _
Goal: compute f(x)
Cost: # of queries
[€ [n] X;
Why consider?
o Strips away implementation details. Algorithm

o Can prove unconditional lower bounds!

l f(x)

Resources in query model: example

Types of queries:

e Deterministic n
e No additional resources x €10, 1)
e Without error
e Computing OR requires O(n) queries

e Randomized i € [n] Xi
e Access to unbiased random bits
e Correct with success Pr % v
e Computing OR requires O(n) queries

e Quantum:O(G/n) Algorithm
e Queryin superposition
e Correct with success Pr %
e Computing OR requires ©(y/n) queries

l OR(x)

Resources in query model: example

Types of queries:

o Deterministi.c. x € {0, 1)"
e No additional resources
e Without error
e Computing OR requires O(n) queries

e Randomized i € [n] Xi
e Access to unbiased random bits
e Correct with success Pr % v
e Computing OR requires O(n) queries

e Quantum:@(yn) Algorithm
e Queryin superposition
e Correct with success Pr % Bounded error: success
e Computing OR requires ®(y/n) probability % l
Unbounded error: better OR(x)

than random guessing

Approximate degree

Let f: D — {0,1} where D < {0,1}" .

A polynomial p: {0, 1}"* - R is e-approximation to f if
—e<p(x)<1+¢eforallx €{0,1}"
lp(x) — f(x)| < eforallx € D

Approximate degree d?gg(f) of f is the least degree of a polynomial that ¢-
approximates f.

Default error € =

Corresponds to bounded error query model

Applications of d?g

Upper bounds:

Learning Algorithms

[Klivans-Servedio03, Klivans-Servedio06, Kalai-Klivans-Mansour-

Servedio06]

Approximate Inclusion-Exclusion

[Kahn-Linial-Samorodnitsky96, Sherstov08]

Differentially Private Query Release

[Thaler-Ullman-Vadhan12, Chandrasekaran-Thaler-Ullman-Wan14]

Formula & Graph Complexity Lower

Bounds [Tal14,16ab]

Lower bounds:

 Communication Complexity

[Sherstov07, Shi-Zhu07, Chattopadhyay-Ada08, Lee-Shraibman08,...]

e Circuit Complexity

[Minsky-Papert69, Beigel93, Sherstov08]

e OQOracle Separations

[Beigel94, Bouland-Chen-Holden-Thaler-Vasudevan16]

e Secret Sharing Schemes

[Bogdanov-Ishai-Viola-Williamson16]

e Quantum query complexity

Polynomial method

[The e-approximate degree of a function is always at most its randomized query]
complexity with error €.

Polynomial method

[The g-approximate degree of a function is always at most 7 its quantum query]
complexity with error €.

Polynomial method

p
Acceptance probability of a quantum T-query algorithm is a polynomial of degree 2T. }
The g-approximate degree of a function is always at most % its quantum query }

L complexity with error €.

4 ™ R

e Robust Other ways to prove lower bounds:
* “« ”
» Lifts to quantum communication [she11], adversary” methods
H . e H _ . ” L.
e Canyield lower bounds against zero-, small-, and Positive-weights” method (ambainiso2]
.
unbounded-error quantum algorithms [Bac+01, Easy to apply, but limited in
BCAWZ99],) power)
* Gives time-space tradeoffs [ksawo07] * “Negative-weights” method [Hoyer-Lee-
. .. e - Spalek07, ..., Reichardt11]
Transpsrenthm |ddent_|f.y|ng tht;.;lhardness « Tight characterization, but
* Search vs decision problem

difficult t I
\ e Can be more intuitive than some other methods/ \ Hicult to apply /

Problems

Ordered search OS,n

Given: string 01V =% N = 2n
Output: x

Hidden string

Given: collection of bits 7,(x), where
T,(x) = 1iff s is a substring of hidden x
Output: x

Problems

Ordered search OS,n

Given: string 01V =% N = 2n
Output: x

Hidden string

Given: collection of bits 7,(x), where
T,(x) = 1iff s is a substring of hidden x

Output: x

x € {0, 1}"

s € {0, 1}="

T5(%)

Algorithm

|-

11

Problems

x € {0, 1}"
Ordered search OS,n 1
Given: string 0¥ 1V ™% N = 2" i €{0,1}" GT;(x)
Output: x
Hidden string AZerin
Given: collection of bits 7,(x), where
T,(x) = 1iff s is a substring of hidden x X

Output: x

12

Problems

Ordered search OS,n

Given: string 01V =% N = 2n
Output: x

Hidden string

Given: collection of bits 7,(x), where
T,(x) = 1iff s is a substring of hidden x

Output: x

x € {0, 1}"

i€Q

a;(x)

Algorithm

|-

13

Problems

Ordered search OS,n

Given: string 01V =% N = 2n
Output: parity(x)

Hidden string

Given: collection of bits 7,(x), where
T,(x) = 1iff s is a substring of hidden x
Output: parity(x)

x € {0, 1}"

i€Q

a;(x)

Algorithm

l parity(x)

14

Results: state-of-the-art

Ordered Search 0S,n Hidden String
Approximate degree, 0(n), Q(\/n) (Bawss] 0 (n) [s595][CIG+12]
Quantum query complexity for
decision problem
Quantum query complexity for 0(n) 0 (n)sses), A(n/log? n) [G+12]

Results: bounded error

Ordered Search 0S,n

Approximate degree, 0(n), Q(\/n) (Bawss]
Quantum query complexity for This work: Q(n/log? n)
decision problem

Quantum query complexity for 0O(n)

Hidden String

0 (n) [s595][CIG+12]
This work: Q(n/log? n)

0(n)sses), Q(n/ log? n) [cG+12]
This work: Q(n/log?n)

16

Results: unbounded error

Ordered Search 0S,n Hidden String

Approximate degree, ' 0 (n —log) Q7 — log2 1) 0(n) [s595] [CIG+12]
Quantum query complexity for 14

. [BAW99]
decision problem _ " log L
Success pr% +vy " Nog2n og;)
Quantum query complexity for | @(n — logl) [Implicit in Amb99] 0 (n — logl) [5595],
reconstruction problem Y
Success pry ()/) [CIG+12]

e All results in this work were achieved using the same framework.

1
— log;)

1
- 108;)

17

Problems

x € {0,1}"
Ordered search OS;n 1
Given: string 0¥1NV=* N = 2" i €{0,1}" GT;(x)
Output: parity(x)

Algorithm

l parity(x)

18

Buhrman and de Wolf’s argument

[Theorem. Every polynomial that approximates 0S,n» requires degree Q(\/n).

Buhrman and de Wolf’s argument

[Theorem. Every polynomial that approximates 0S,n» requires degree Q(\/n).

OSZn

N T

GTOO...OO GTOO 01 GT11...11

7

X1X2 ... Xn x1x2 ...xn X1x2 ...xn

parity

X1X2 ... Xn

20

Buhrman and de Wolf’s argument

[Theorem. Every polynomial that approximates 0S,n» requires degree Q(\/n).

degree OSZn ~ P
d /R
GToo..00 GToo..01 GT11.11

M

X1X2 ... Xn x1x2 ...xn X1x2 ...xn

parity

X1X2 ... Xn

21

Buhrman and de Wolf’s argument

[Theorem. Every polynomial that approximates 0S,n» requires degree Q(\/n).]
degree 0S,n = p parity
N T/
A GTyo..00 ® 900..00 GToo..01 = qo0..01 GTi1.11 = Q11,11
o M- N
\Z X1Xp v Xp X1X3 o X X1X7 . X1X2 -

[Claim 1. Vi € {0, 1}" there exists a polynomial of x of degree 0 (y/n) that approximates GT;(x).]

22

Buhrman and de Wolf’s argument

[Theorem. Every polynomial that approximates 0S,n» requires degree Q(\/n).]

N

degree 0S,n = p parity = p ° qie{o,1}"

0(d+/n) d /N

v GToo..00 ® 900..00 GToo..01 = 9o00..01 GTi1 11 = 911..11
0/m) m m /N

v v X1X7 .. X1X2 .. X1X2 .. X1X2 -

N

[Claim 1. Vi € {0, 1}" there exists a polynomial of x of degree 0 (y/n) that approximates GT;(x).]

——

[[Shel2] Every polynomial can be made robust to constant noise with constant blowup in degree.

23

Buhrman and de Wolf’s argument

[Theorem. Every polynomial that approximates 0S,n» requires degree Q(\/n).

N

degree 0S,n = p parity = p ° qie{o,1}"

0(d+/n) d /N

v GTyo..00 = Y900..00 GToo..01 = qo0..01 GTyp.11 = 91111 Q(n)
o m %N m

v v X1X7 .. X1X2 .. X1X2 .. X1X2 -

N

Claim 1. Vi € {0, 1}" there exists a polynomial of x of degree 0 (y/n) that approximates GT;(x).

[Shel2] Every polynomial can be made robust to constant noise with constant blowup in degree.

s

Claim 2. Every polynomial of x that approximates parity(x) requires degree Q(n).

.

Our argument

[Theorem. Every polynomial that approximates 0S,n requires degree Q(n/log? n).

/OSTWPN parity(x) = P © diefo)"
GToo..00 = 900..00 GToo..01 = Goo..01 GTi1 11 = 911..11

Y (x) Y (x) Y (x) Y(x)

25

Our argument

[Theorem. Every polynomial that approximates 0S,n requires degree Q(n/log? n).]
d ~ .
I ;gree/OSzan parity(x) ~ P ° diefo)"
A GToo..00 = 900..00 GToo..01 = 9o00..01 GTi1 11 = 911..11
O(logn)
\Z Y (x) Y(x) Y(x) Y(x)

[Claim 1. Vi € {0, 1}" there exists a polynomial of Y(x) of degree O (logn) that approximates GT;(x). }

26

Our argument

[Theorem. Every polynomial that approximates 0S,n requires degree Q(n/log? n).]
N
degree 0Sn ~ . ~1 o .
on =P parity(x) =P ° qie{o,1}"
0(d logn) d /N
A GToo..00 = 900..00 GToo..01 = Goo..01 GTi1 11 = 911..11
O(logn) %N
Voo Y (x) Y (x) Y (x) Y(x)

[Claim 1. Vi € {0, 1}" there exists a polynomial of Y (x) of degree 0 (logn) that approximates GT;(x). }

[[Shel2] Every polynomial can be made robust to constant noise with constant blowup in degree.]

27

Our argument

[Theorem. Every polynomial that approximates 0S,n requires degree Q(n/log? n).

N

degree 0S,n = p parity(x) =P ° qie{o,1}"

O(d logn) d /N
Q(—

N

Y (x) Y (x) Y (x) Y(x)

pd
~
/

v GTop..00 ® 900..00 GToo..01 ® Goo..01 GTi1 11 = 911..11 logn

~

(Claim 1. Vi € {0, 1}" there exists a polynomial of Y (x) of degree 0 (logn) that approximates GT;(x).

[Shel2] Every polynomial can be made robust to constant noise with constant blowup in degree.

Claim 2. Every polynomial of Y (x) that approximates parity(x) requires degree (n/logn).

Our argument Sample r < R

[Theorem. Every polynomial that approximates 0S,n requires degree Q(n/log? n).]
A 4 N\
ceree OS,n = p parity(x) =P ° Qiefo,1}"
0(d logn) d /N '
Q)
A GToo..00 = 900..00 GToo..01 ® Goo..01 GTi1 11 = 911..11 logn
Joen /\ %\ /\

v 7 Y(r,x) Y(r, x) Y(r, x) Y(r,x) 7

~

Claim 1. W.h.p. vi € {0,1}" there exists a polynomial of Y (r, x) of degree 0(logn) that approximates GT;(x).

N\

[Shel2] Every polynomial can be made robust to constant noise with constant blowup in degree.

J

N\

Claim 2. W.h.p. every polynomial of Y (7, x) that approximates parity(x) requires degree (1(n/logn).

Communication complexity

Random LT TTTTTT]

string

v

A

v

O (k| |O

A

f(a,b)

30

How many bits of communication are required? }

GT communication problem

Random LT TTTTTT]

string

a €{0,1}"

v

A

v

A

GT(a,b) =1iffa>b
Nisan’93: O(logn) protocol
Today: O(lognloglogn) protoco]

a € {0,1}"

EQ communication problem

Random LT TTTTTT]

string

v

A

v

A

EQ(a,b) =1iffa=0»b

32

EQ communication protocol

(q, NN)

Equal

A

Only need constant communication for constant error!
1 _
Need O(loglogn) for@ = 2~ loglogn gprqy,

111000211
b € {0,1}"

Compare to
(p, NN)

33

GT communication protocol using EQ

Random
strings

| EEEN

| EEEEEN
HEEE BN

I:I:I:I:I:I:D
[T TTT]
[[] [[]
D:I:I:I:II

111000111

v

A

v

A

v

A

v

b € {0,1}"

34

GT communication protocol using EQ

[HNEEEN K Nehe
EEEE BE
Random EEEEEEE -'*-'4’4
I P 11001101 SR 11000111
L ac{0,1)" b e {0,1)"
(o, NN [[1]) ., Compare to

(p, I TTT1)

A

v

A

v

A

v

Random
strings

A

v

A

v

A

v

1110002111
b € {0,1}"

36

Random
strings

(o I TTT1])

Equal

A

(o, TTT 1)

A

v

A

v

11171000111
b € {0, 1}"

Compare to
(b, (T W T7)

37

Random
strings

(o I TTT1])

Equal

A

(o, TTT 1)

Not equal

A

v

A

v

111000211
b € {0,1}"

38

Random
strings

(o I TTT1])

< Equal

(q, TTT W T]) .
< Not equal

(q CITTITTI)

v

A

v

111000211
b € {0,1}"

Compare to
(b, (T WTT1)

39

Random
strings

(o I TTT1])

v

< Equal

(q, TTT W T]) .
< Not equal

(q CITTITTI)

Not equal

v

A

v

111000211
b € {0,1}"

40

GT communication protocol using EQ

_ mmmm
- EEmmmn
CIT T T
Random _SEEmEEE
strings e

J B 1i10o0d101 CCICIOE (1160041
‘ a €{0,1}" b € {0,1}"
(o I TTT1])

v

Equal
(@ OTTT W T])

A

v

Not equal
(a,llll.lll)

A

v

Not equal Compare to
(q, LITTTdTTT) R (b, LILLTTdTTT) 41

A

GT communication protocol using EQ

— mEEm
S EEEEEE
CIT T T
Random _SEEmEEE
strings e

J B 1i10o0d101 CCICIOE (1160041
| a €{0,1}" b € {0,1}"
(o I TTT1])

v

< Equal
(q (TTTHT1) .
< Not equal
Communication NEEEE _EEEY .
complexity < Not equal Compare to
O(lognloglogn) (q, OTTTATT]) (b, IITTETTY) 2

First attempt

Y(x) = (', *Dyregoryn The .oracle‘Y-' contains all the possible
partial parities of x.

First attempt

Y(x) = (', *Dyregoryn The .oracle‘Y-' contains all the possible
partial parities of x.

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O (lognloglogn) that approximates GT;(x).

Claim 2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates
parity(x) requires degree (1(n/logn).

First attempt

Y(x) = (', *Dyregoyn The .oracle‘Y-' contains all the possible
partial parities of x.

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O (lognloglogn) that approximates GT;(x).

* There exists a randomized algorithm that given i (hardcoded) and access to Y (x), outputs
GT;(x) with Pr 2/3 with query complexity O (lognloglogn).

Claim 2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates
parity(x) requires degree (1(n/logn).

First attempt

Y(x) = (', *Dyregoyn The .oracle‘Y-' contains all the possible
partial parities of x.

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O (lognloglogn) that approximates GT;(x).

There exists a randomized algorithm that given i (hardcoded) and access to Y (x), outputs
GT;(x) with Pr 2/3 with query complexity O (lognloglogn).

Every randomized query algorithm converts to a polynomial of the same degree as query
complexity.

Claim 2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates
parity(x) requires degree (1(n/logn).

First attempt

Y(x) = (', *Dyregoryn The .oracle'Y" contains all the possible
partial parities of x.

aingf1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O (lognloglogn) that approximates GT;(x).

There exists a randomized algorithm that given i (hardcoded) and access to Y (x), outputs
GT;(x) with Pr 2/3 with query complexity O (lognloglogn).

Every randomized query algorithm converts to a polynomial of the same degree as query
complexity.

Claim 2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates
parity(x) requires degree (1(n/logn).

First attempt

Y(x) = (', *Dyregoyn The .oracle'Y" contains all the possible
partial parities of x.

aingf1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O (lognloglogn) that approximates GT;(x).

There exists a randomized algorithm that given i (hardcoded) and access to Y (x), outputs
GT;(x) with Pr 2/3 with query complexity O (lognloglogn).

Every randomized query algorithm converts to a polynomial of the same degree as query
complexity.

Claim 2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates
parity(x) requires degree (1(n/logn).

Exists a polynomial of degree 1: parity(x) = (1", x)

First attempt

Y(x) = (', *Dyregoyn The .oracle'Y" contains all the possible
partial parities of x.

aingf1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O (lognloglogn) that approximates GT;(x).

There exists a randomized algorithm that given i (hardcoded) and access to Y (x), outputs
GT;(x) with Pr 2/3 with query complexity O (lognloglogn).

Every randomized query algorithm converts to a polynomial of the same degree as query
complexity.

Cl 2. With probability 2/3 over the choice of r < R every polynomial of Y (7, x) that approximates
parity(x) requires degree (1(n/logn).

Exists a polynomial of degree 1: parity(x) = (1", x)

Second attempt

Y(r,x) = ((T’; x))rler

The oracle Y has enough info for one full run of GT.

| EEEN

| EEEEEN
CIT T 7]

| INEEEEN
HE EEEEN
HEEE EEE
[TTTTTH]

|

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of

Y (r, x) of degree O(lognloglogn) that approximates GT;(x).

|

|

Claim 2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates

parity(x) requires degree (1(n/logn).

|

50

Second attempt

Y(r,x) = ((T’; x))rler

The oracle Y has enough info for one full run of GT.

| EEEN

| EEEEEN
CIT T 7]

| INEEEEN
HE EEEEN
HEEE EEE
[TTTTTH]

|

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of

Y (r, x) of degree O(lognloglogn) that approximates GT;(x).

|

|

Claim 2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates

parity(x) requires degree (1(n/logn).

|

Not enough information to reconstruct parity(x)

51

Second attempt

Y(r,x) = ((T’; x))rler

The oracle Y has enough info for one full run of GT.

| EEEN

| EEEEEN
CIT T 7]

| INEEEEN
HE EEEEN
HEEE EEE
[TTTTTH]

|

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of

Y (r, x) of degree O(lognloglogn) that approximates GT;(x).

|

|

laingf2. With probability 2/3 over the choice of r « R every polynomial of Y (r, x) that approximates

pfFity(x) requires degree (1(n/logn).

|

Not enough information to reconstruct parity(x)

52

Second attempt

Y(r,x) = ((T’; x))rler

The oracle Y has enough info for one full run of GT.

| EEEN

| EEEEEN
CIT T 7]

| INEEEEN
HE EEEEN
HEEE EEE
[TTTTTH]

|

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of

Y (r, x) of degree O(lognloglogn) that approximates GT;(x).

|

* There exists a deterministic algorithm that for all i, x € {0, 1} with Pr 2/3 outputs
GT;(x) with query complexity O(lognloglogn).

|

laingf2. With probability 2/3 over the choice of r « R every polynomial of Y (r, x) that approximates

pfFity(x) requires degree (1(n/logn).

|

Not enough information to reconstruct parity(x)

53

Second attempt

Y(r,x) = ((T’; x))rler

The oracle Y has enough info for one full run of GT.

| EEEN

| EEEEEN
CIT T 7]

| INEEEEN
HE EEEEN
HEEE EEE
[TTTTTH]

|

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of

Y (r, x) of degree O(lognloglogn) that approximates GT;(x).

|

* There exists a deterministic algorithm that for all i, x € {0, 1} with Pr 2/3 outputs
GT;(x) with query complexity O(lognloglogn).
* Wrong order!

|

laingf2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates

pfFity(x) requires degree (1(n/logn).

|

Not enough information to reconstruct parity(x)

54

Second attempt

|| HEEN
| AEEEEN
CTT T T
r < R
, | INEEEEN
Y(r,x) = (7', x))rrer HE_ENEEE
The oracle Y has enough info for one full run of GT. LLIITI]
% 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O(lognloglogn) that approximates GT;(x).

|

* There exists a deterministic algorithm that for all i, x € {0, 1} with Pr 2/3 outputs
GT;(x) with query complexity O(lognloglogn).
* Wrong order!

|

laingf2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates

pfFity(x) requires degree (1(n/logn).

|

Not enough information to reconstruct parity(x)

55

Final attempt

r< R
Y(r,x) = ((T’; x))rler

The oracle Y has enough info for t = poly(n) full runs of GT.

F e
%E&Hﬂmm
B R
Eanaaasfill=saaams

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O(lognloglogn) that approximates GT;(x).

Claim 2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates
parity(x) requires degree (1(n/logn).

56

Final attempt

r< R
Y(r,x) = ((T’; x))rler

The oracle Y has enough info for t = poly(n) full runs of GT.

F e
%E&Hﬂmm
B R
Eanaaasfill=saaams

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O(lognloglogn) that approximates GT;(x).

Claim 2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates
parity(x) requires degree (1(n/logn).

Still not enough information to reconstruct parity(x)
57

Final attempt

r< R
Y(r,x) = ((T’; x))rler

The oracle Y has enough info for t = poly(n) full runs of GT.

F e
%E&Hﬂmm
B R
Eanaaasfill=saaams

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O(lognloglogn) that approximates GT;(x).

laingf2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates
pfFity(x) requires degree (1(n/logn).

Still not enough information to reconstruct parity(x)
58

Final attempt

r< R

F e
%E&Hﬂmm
B R
Eanaaasfill=saaams

Y(r,x) = {(r, xDrrer
The oracle Y has enough info for t = poly(n) full runs of GT.

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O(lognloglogn) that approximates GT;(x).

* There exists a randomized algorithm that with Pr 2/3 over r « R for all i, x € {0, 1}" outputs
GT;(x) with Pr 2/3 over internal randomness with query complexity O (lognloglogn).

laingf2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates
pfFity(x) requires degree (1(n/logn).

Still not enough information to reconstruct parity(x)
59

Final attempt

r< R
Y(r,x) = ((T’;x»wer

The oracle Y has enough info for t = poly(n) full runs of GT.

F e
%MMMM
B R
oren B

Claim 1. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O(lognloglogn) that approximates GT;(x).

* There exists a randomized algorithm that with Pr 2/3 over r « R for all i, x € {0, 1}" outputs
GT;(x) with Pr 2/3 over internal randomness with query complexity O (lognloglogn).

* Every randomized query algorithm converts to a polynomial of the same degree as query
complexity.

laingf2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates
pfFity(x) requires degree (1(n/logn).

Still not enough information to reconstruct parity(x)
60

Final attempt

r< R
Y(r,x) = ((T’;x»wer

The oracle Y has enough info for t = poly(n) full runs of GT.

F e
%MMMM
B R
oren B

Claimgl. With probability 2/3 over the choice of r « R for each i € {0, 1}" there exists a polynomial of
Y (r, x) of degree O(lognloglogn) that approximates GT;(x).

* There exists a randomized algorithm that with Pr 2/3 over r « R for all i, x € {0, 1}" outputs
GT;(x) with Pr 2/3 over internal randomness with query complexity O (lognloglogn).

* Every randomized query algorithm converts to a polynomial of the same degree as query
complexity.

laingf2. With probability 2/3 over the choice of r « R every polynomial of Y (r, x) that approximates
pfFity(x) requires degree (1(n/logn).

Still not enough information to reconstruct parity(x)
61

Oracle structure

a = O(loglogn) copies

(Y(T', x))i = (Ti,X)
r= (", .., H),; €{0,1}"
r< R
. Random bit

Zero

62

Updated oracle structure R

Basis

Copy 1

i

Copy 2

t = poly(n)

Copy t

63

Query algorithm for GT;

Input: oracle access to Y (7, x)

1. Samplej « [t] u.a.r

64

Query algorithm for GT;

Input: oracle access to Y (r, x)

1. Samplej « [t] u.a.r

2. Simulate communication
protocol using inner products
from copy j

65

Query algorithm for GT;

Input: oracle access to Y (r, x)

1. Samplej « [t] u.a.r
2. Simulate communication
protocol using inner products

from copy j

o Compute (i, I T 1 11)
o Query (x, I 1)

o Compare values

o] Bl [1

66

Query algorithm for GT;

Input: oracle access to Y (7, x)

1. Samplej « [t] u.a.r
2. Simulate communication
protocol using inner products

from copy j

o Compute (i, I T 1 11)
o Query (x, I 1)

o Compare values

o] Bl [1

67

Query algorithm for GT;

Input: oracle access to Y (r, x)

1. Samplej « [t] u.a.r
2. Simulate communication
protocol using inner products

from copy j
o Compute (i,[|
o Query (x,[]
o Compare values

[T 1)
HE EE)

o] Bl [1

68

Query algorithm for GT;

Input: oracle access to Y (r, x)

1. Samplej « [t] u.a.r
2. Simulate communication
protocol using inner products

from copy j
o Compute (i,[|
o Query (x,[]
o Compare values

[T 1)
HE EE)

o] Bl [1

69

Query algorithm for GT;

Input: oracle access to Y (r, x)

1. Samplej « [t] u.a.r
2. Simulate communication
protocol using inner products

from copy j
o Compute (i,[|
o Query (x,[]
o Compare values

[T TT1)
[T T T1)

o] Bl [1

70

Query algorithm for GT;

Input: oracle access to Y (r, x)

1. Samplej « [t] u.a.r
2. Simulate communication
protocol using inner products

from copy j
o Compute (i,[|
o Query (x,[]
o Compare values

[T TT1)
[T T T1)

o] Bl [1

71

Query algorithm for GT;

Input: oracle access to Y (r, x)

1. Samplej « [t] u.a.r

2. Simulate communication
protocol using inner products
from copy j

3. Query most significant bit and

compare it to the value in i
o Compute (i, ([T TTTTT]I)

o Query (x,[[[TTTT[T])
o Compare values

o] Bl [1

72

Query algorithm for GT;

Input: oracle access to Y (r, x)

1. Samplej « [t] u.a.r
2. Simulate communication
protocol using inner products
from copy j
3. Query most significant bit and
compare it to the value in i
o Compute (i, (T TTTTTT])
o Query (x,[[TTTTTTI)

o Compare values

o] Bl [1

Query complexity O(lognloglogn)

73

Upper bound for GT;

Claim 1’. With probability 2/3 over r « R u.a.r. forall i € {0, 1}" there exists an algorithm A; with
oracle access to Y (r, x) that compute the corresponding GT; with probability 2/3 over internal
randomness and has query complexity at most O(lognloglogn).

U

Claim 1. With probability 2/3 over r « R u.a.r. for all i € {0, 1}™ there exists a polynomial g; of Y (r, x)
that approximate the corresponding GT; and has degree at most O(lognloglogn).

74

Upper bound for GT;

Claim 1’. With probability 2/3 over r « R u.a.r. forall i € {0, 1}" there exists an algorithm A; with
oracle access to Y (r, x) that compute the corresponding GT; with probability 2/3 over internal
randomness and has query complexity at most O (log n).

U

Claim 1. With probability 2/3 over r « R u.a.r. for all i € {0, 1}™ there exists a polynomial g; of Y (r, x)
that approximate the corresponding GT; and has degree at most O(logn).

75

Lower bound for parity

Claim 2. With probability 2/3 over the choice of r < R every polynomial of Y (7, x) that approximates
parity(x) requires degree (n/logn).

n

* Generalizes for any R with a “good” structure! ((

)

log(size of oracleY)

* Works for approximation to any error

Lower bound for parity

Claim 2. With probability 2/3 over the choice of r < R every polynomial of Y (r, x) that approximates
parity(x) requires degree (n/logn).

* Proof idea 1: We consider polynomials over {—1, 1} instead of {0, 1}
* Proof idea 2: All monomials of degree < n are orthogonal to parity in {—1, 1}
basis.

* Proof idea 3: Getting a monomial of x of degree n by multiplying $ bits of

Y (r, x) is improbable.

Lower bound for parity: key lemma

Indexk€[n]: 1 2 3 4 5 6 7 8
- N 2 En =h
Getting the all-ones string by taking bit-wise RN
XOR of 10211 strings from a sampler « R is L
improbable over the choice of r. ||

N /

~ logn

78

Final result for OS Sample 1 « R

[Theorem. Every polynomial that approximates 0S,n requires degree Q(n/log? n).]
A N\
degree OS.n ~ . 0 (.
on =P parity(x) =P ° qie{o,1}"
0(d logn) d /N
Q)
A GToo..00 = q00..00 GToo..01 ® Goo..01 GTi1 11 = 911..11 logn
Jeem /\ m /\

% % Y(r,x) Y(r, x) Y(r, x) Y(r,x) \%

~

Claim 1. W.h.p. vi € {0,1}" there exists a polynomial of Y(r, x) of degree 0(logn) that approximates GT;(x).

[Shel2] Every polynomial can be made robust to constant noise with constant blowup in degree.

Claim 2. W.h.p. Every polynomial of Y (7, x) that approximates parity(x) requires degree 1(n/logn).

Summary

* New (and almost tight) lower bound for approximate degree of Ordered search: Q(n/log? n)

n
2

* Generalizable to unbounded error regime: Q(— log%)

log=n
* Same lower bounds for Hidden string problem using the same approach
* As a corollary, lower bounds on quantum query complexity of decision versions

* New framework for lower bounds on oracle identification problems

Open problems:

* Using the easiness of one problem in the presence of additional information to prove the hardness
of another

* Using this framework for other open problems

* Using this framework in other settings: circuit complexity, proof complexity, massive parallel
computation model, ...

* Closing the gap for ordered search and hidden string: Q(n/log? n) and 0 (n)

Summary

* New (and almost tight) lower bound for approximate degree of Ordered search: Q(n/log? n)

n
2

* Generalizable to unbounded error regime: Q(— log%)

log=n
* Same lower bounds for Hidden string problem using the same approach
* As a corollary, lower bounds on quantum query complexity of decision versions

* New framework for lower bounds on oracle identification problems
Thank you!

Open problems:

* Using the easiness of one problem in the presence of additional information to prove the hardness
of another

* Using this framework for other open problems

* Using this framework in other settings: circuit complexity, proof complexity, massive parallel
computation model, ...

* Closing the gap for ordered search and hidden string: Q(n/log? n) and 0 (n)

	Slide 1: Approximate degree lower bounds for oracle identification problems
	Slide 2: Query model
	Slide 3: Resources in query model: example
	Slide 4: Resources in query model: example
	Slide 5: Approximate degree
	Slide 6: Applications of open paren d e g close paren tilde
	Slide 7: Polynomial method
	Slide 8: Polynomial method
	Slide 9: Polynomial method
	Slide 10: Problems
	Slide 11: Problems
	Slide 12: Problems
	Slide 13: Problems
	Slide 14: Problems
	Slide 15: Results: state-of-the-art
	Slide 16: Results: bounded error
	Slide 17: Results: unbounded error
	Slide 18: Problems
	Slide 19: Buhrman and de Wolf’s argument
	Slide 20: Buhrman and de Wolf’s argument
	Slide 21: Buhrman and de Wolf’s argument
	Slide 22: Buhrman and de Wolf’s argument
	Slide 23: Buhrman and de Wolf’s argument
	Slide 24: Buhrman and de Wolf’s argument
	Slide 25: Our argument
	Slide 26: Our argument
	Slide 27: Our argument
	Slide 28: Our argument
	Slide 29: Our argument
	Slide 30: Communication complexity
	Slide 31: GT communication problem
	Slide 32: EQ communication problem
	Slide 33: EQ communication protocol
	Slide 34: GT communication protocol using EQ
	Slide 35: GT communication protocol using EQ
	Slide 36: GT communication protocol using EQ
	Slide 37: GT communication protocol using EQ
	Slide 38: GT communication protocol using EQ
	Slide 39: GT communication protocol using EQ
	Slide 40: GT communication protocol using EQ
	Slide 41: GT communication protocol using EQ
	Slide 42: GT communication protocol using EQ
	Slide 43: First attempt
	Slide 44: First attempt
	Slide 45: First attempt
	Slide 46: First attempt
	Slide 47: First attempt
	Slide 48: First attempt
	Slide 49: First attempt
	Slide 50: Second attempt
	Slide 51: Second attempt
	Slide 52: Second attempt
	Slide 53: Second attempt
	Slide 54: Second attempt
	Slide 55: Second attempt
	Slide 56: Final attempt
	Slide 57: Final attempt
	Slide 58: Final attempt
	Slide 59: Final attempt
	Slide 60: Final attempt
	Slide 61: Final attempt
	Slide 62: Oracle structure
	Slide 63: Updated oracle structure R
	Slide 64: Query algorithm for cap G cap T sub i.
	Slide 65: Query algorithm for cap G cap T sub i.
	Slide 66: Query algorithm for cap G cap T sub i.
	Slide 67: Query algorithm for cap G cap T sub i.
	Slide 68: Query algorithm for cap G cap T sub i.
	Slide 69: Query algorithm for cap G cap T sub i.
	Slide 70: Query algorithm for cap G cap T sub i.
	Slide 71: Query algorithm for cap G cap T sub i.
	Slide 72: Query algorithm for cap G cap T sub i.
	Slide 73: Query algorithm for cap G cap T sub i.
	Slide 74: Upper bound for cap G cap T sub i.
	Slide 75: Upper bound for cap G cap T sub i.
	Slide 76: Lower bound for parity
	Slide 77: Lower bound for parity
	Slide 78: Lower bound for parity: key lemma
	Slide 79: Final result for OS
	Slide 80: Summary
	Slide 81: Summary

