MAXIMUM ENTANGLEMENT OF MIXED SYMMETRIC STATES UNDER UNITARY TRANSFORMATIONS

E. Serrano-Ensástiga ${ }^{1,2, *}$ \& J. Martin ${ }^{1, \dagger}$

${ }^{1}$ Institut de Physique Nucléaire, Atomique et de Spectroscopie, CESAM, University of Liège, Liège, Belgique
${ }^{2}$ Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Baja California, México
*ed.ensastiga@uliege.be \quad j jmartin@uliege.be

Motivation

The problem studied by Verstraete, Audenaert and De Moor in [1] - about which global unitary operations maximize the entanglement of a bipartite qubit system - is revisited, extended and solved when permutation symmetry on the qubits is imposed [2]. This condition appears naturally in bosonic systems or spin systems [3]. We fully characterize the set of absolutely separable symmetric states (SAS) for two qubits and provide fairly tight bounds for three qubits. In particular, we find the maximal radius of a ball of SAS states around the maximally mixed state in the symmetric sector, and the minimum radius of a ball that includes the set of SAS states, for both two and three qubits.

Useful concepts

The negativity \mathcal{N} of a state $\rho \in \mathcal{B}(\mathcal{H})$, defined in terms of the negative eigenvalues $\Lambda_{k}<0$ of the partial transpose of ρ

$$
\begin{equation*}
\mathcal{N}(\rho)=-2 \sum_{k} \Lambda_{k} \tag{1}
\end{equation*}
$$

is a measure of entanglement for qubit-qubit and qubit-qutrit systems [4]. The maximum entanglement in the $S U(4)$-orbit of a 2-qubit state is [1]

$$
\max _{U \in S U(4)} \mathcal{N}\left(U \rho U^{\dagger}\right)=\max \left(0, \sqrt{\left(\lambda_{1}-\lambda_{3}\right)^{2}+\left(\lambda_{2}-\lambda_{4}\right)^{2}}-\lambda_{2}-\lambda_{4}\right)
$$

where $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \lambda_{4}$ is the eigenspectrum of ρ. In particular, Eq. (2) characterizes the set of absolutely separable states which are the states that remain separable after any global unitary transformation [5].

Problem statement

When there is a permutation invariance restriction on the quantum states, this reduces their allowed eigenspectrum and the admissible global unitary transformations. In this case, what is the maximum entanglement achievable under a global unitary transformation in the symmetric subspace?

Qubit-qubit system $\mathcal{H}_{2}^{\otimes 2}$	Symmetric 2-qubit system $\mathcal{H}_{2}^{\vee 2}$
ρ-spectrum: $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$	ρ_{S}-spectrum: $\left(\tau_{1}, \tau_{2}, \tau_{3}, 0\right)$
$\max _{U \in S U(4)} \mathcal{N}\left(U \rho U^{\dagger}\right)$	$\max _{U_{S} \in S U(3)} \mathcal{N}\left(U_{S} \rho_{S} U_{S}^{\dagger}\right)$
Qubit-qutrit system $\mathcal{H}_{2} \otimes \mathcal{H}_{3}$	Symmetric 3-qubit system $\mathcal{H}_{2}^{\vee 3}$
ρ-spectrum: $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}\right)$	$\rho_{S}-\operatorname{spectrum:~}\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}, 0,0\right)$
$\max _{U \in S U(6)} \mathcal{N}\left(U \rho U^{\dagger}\right)$	$\max _{U_{S} \in S U(4)} \mathcal{N}\left(U_{S} \rho_{S} U_{S}^{\dagger}\right)$

We define a Symmetric Absolutely Separable (SAS) state ρ_{S} as a state verifying $\mathcal{N}\left(U_{S} \rho_{S} U_{S}^{\dagger}\right)=0$ for any unitary U_{S} leaving the symmetric subspace invariant. There are two balls centred on the maximally mixed state in the symmetric subspace ρ_{0} which qualitatively describe the extension of the set $\mathcal{A}_{\text {sym }}$ of SAS states in $\mathcal{B}(\mathcal{H})$, with radii (see Fig. 1):
$R_{S A S} \equiv$ minimal radius of the ball centred on ρ_{0} and containing $\mathcal{A}_{\text {sym }}$,
$r_{S A S} \equiv$ maximal radius of the ball centred on ρ_{0} and contained in $\mathcal{A}_{\text {sym }}$.

Fig. 1: The set $\mathcal{A}_{\text {sym }}$ of symmetric absolutely separable (SAS) states.

Bibliography

[^0]
Symmetric 2-qubit states

Theorem 1 Let $\rho_{S} \in \mathcal{B}\left(\mathcal{H}_{2}^{\vee 2}\right)$ with spectrum $\tau_{1} \geq \tau_{2} \geq \tau_{3}$. It holds that

$$
\begin{equation*}
\max _{U_{S} \in S U(3)} \mathcal{N}\left(U_{S} \rho_{S} U_{S}^{\dagger}\right)=\max \left\{0, \sqrt{\tau_{1}^{2}+\left(\tau_{2}-\tau_{3}\right)^{2}}-\tau_{2}-\tau_{3}\right\} . \tag{3}
\end{equation*}
$$

Corollary $1 \rho_{S} \in \mathcal{A}_{\text {sym }} \Leftrightarrow \sqrt{\tau_{2}}+\sqrt{\tau_{3}} \geq 1$.
From Corollary 1, we find for $r_{S A S}$ and $R_{S A S}$ (see Figs. 1 and 2)

$$
\begin{equation*}
r_{S A S}=1 / 2 \sqrt{6} \quad R_{S A S}=2 / 3 \sqrt{6} \tag{4}
\end{equation*}
$$

Fig. 2: Density plot of the maximum negativity (3) attained in the $S U(3)$ orbit of $\rho_{S} \in \mathcal{B}\left(\mathcal{H}_{2}^{\vee}{ }^{2}\right)$ over the $\left(\tau_{3}, \tau_{2}\right)$ plane (left) and the $\left(r, \tau_{3}\right)$ plane (right). The grey dashed lines are contour curves of constant negativity. The set $\mathcal{A}_{\text {sym }}$ is depicted by the white region bounded on the left by the black dashed curve.

Symmetric 3-qubit states

Observation $1 A$ symmetric three-qubit state ρ_{S} cannot be $S A S$ if its eigenspectrum $\tau_{1} \geqslant \tau_{2} \geqslant \tau_{3} \geqslant \tau_{4}$ satisfies

$$
\begin{equation*}
\tau_{1}>\sqrt{3 \tau_{3} \tau_{4}} \quad \wedge \quad\left(3 \tau_{1}-2 \tau_{2}\right)^{2} \tau_{3}+3\left(\tau_{2}^{2}-\tau_{3}^{2}\right) \tau_{4}>9 \tau_{3} \tau_{4}^{2} \tag{5}
\end{equation*}
$$

The previous result is an effective non-SAS witness because the only undetected non-SAS states all have a negativity of order 10^{-4} at most. Numerical calculations suggest that Obs. 1 gives the proper radii $r_{S A S}$ and $R_{S A S}$ (equality reached in the yellow points p_{1} and p_{4} of Fig. 3)

Fig. 3: Maximum negativity in the $S U(4)$-orbit of $\rho_{S} \in \mathcal{B}\left(\mathcal{H}_{2}^{\vee}\right)$ in the $\left(\tau_{2}, \tau_{3}, \tau_{4}\right)$ simplex for $\tau_{4}=0,1 / 10,3 / 20,7 / 38$. The pink points are SAS states calculated numerically. See Ref. [2] for more details. The contour curves denote where the maximum negativity is equal to $0.8,0.6,0.4,0.2,0.1$, respectively. The yellow points p_{1} and p_{4} correspond to the eigenvalues $\left(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4}\right)=(3,3,3,1) / 10$ and $(13,9,9,7) / 38$.

[^0]: [1] F. Verstraete, K. Audenaert, and B. De Moor, Phys. Rev. A 64, 012316 (2001). [2] E. Serrano-Ensástiga and J. Martin, arxiv:2112.05102.
 [3] O. Giraud, P. Braun, and D. Braun, Phys. Rev. A 78, 042112 (2008).
 [4] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996)
 [5] K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998).

