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Motivation
The problem studied by Verstraete, Audenaert and De Moor in [1] – about which global unitary operations maximize the entanglement of a bipartite
qubit system – is revisited, extended and solved when permutation symmetry on the qubits is imposed [2]. This condition appears naturally in bosonic
systems or spin systems [3]. We fully characterize the set of absolutely separable symmetric states (SAS) for two qubits and provide fairly tight bounds
for three qubits. In particular, we find the maximal radius of a ball of SAS states around the maximally mixed state in the symmetric sector, and the
minimum radius of a ball that includes the set of SAS states, for both two and three qubits.

Useful concepts
The negativity N of a state ρ ∈ B(H), defined in terms of the negative
eigenvalues Λk < 0 of the partial transpose of ρ

N (ρ) = −2
∑

k

Λk , (1)

is a measure of entanglement for qubit-qubit and qubit-qutrit systems [4].
The maximum entanglement in the SU(4)-orbit of a 2-qubit state is [1]

max
U∈SU(4)

N (UρU†) = max
(

0,
√

(λ1 − λ3)2 + (λ2 − λ4)2 − λ2 − λ4

)
, (2)

where λ1 ≥ λ2 ≥ λ3 ≥ λ4 is the eigenspectrum of ρ. In particular, Eq. (2)
characterizes the set of absolutely separable states which are the states
that remain separable after any global unitary transformation [5].

Problem statement
When there is a permutation invariance restriction on the quantum states,
this reduces their allowed eigenspectrum and the admissible global unitary
transformations. In this case, what is the maximum entanglement
achievable under a global unitary transformation in the symmet-
ric subspace ?
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We define a Symmetric Absolutely Separable (SAS) state ρS as a
state verifying N (USρSU

†
S) = 0 for any unitary US leaving the symmetric

subspace invariant. There are two balls centred on the maximally mixed
state in the symmetric subspace ρ0 which qualitatively describe the exten-
sion of the set Asym of SAS states in B(H), with radii (see Fig. 1):

RSAS ≡ minimal radius of the ball centred on ρ0 and containing Asym,
rSAS ≡ maximal radius of the ball centred on ρ0 and contained in Asym.
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Fig. 1: The set Asym of symmetric absolutely separable (SAS) states.
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Symmetric 2-qubit states
Theorem 1 Let ρS ∈ B(H∨2

2 ) with spectrum τ1 ≥ τ2 ≥ τ3. It holds that

max
US∈SU(3)

N
(
USρSU

†
S

)
= max

{
0,
√
τ2

1 + (τ2 − τ3)2 − τ2 − τ3

}
. (3)

Corollary 1 ρS ∈ Asym ⇔ √
τ2 +√τ3 ≥ 1.

From Corollary 1, we find for rSAS and RSAS (see Figs. 1 and 2)

rSAS = 1/2
√

6 RSAS = 2/3
√

6 (4)

Fig. 2: Density plot of the maximum negativity (3) attained in the SU(3)
orbit of ρS ∈ B

(
H∨2

2
)
over the (τ3, τ2) plane (left) and the (r, τ3) plane

(right). The grey dashed lines are contour curves of constant negativity.
The set Asym is depicted by the white region bounded on the left by the
black dashed curve.

Symmetric 3-qubit states
Observation 1 A symmetric three-qubit state ρS cannot be SAS if its
eigenspectrum τ1 > τ2 > τ3 > τ4 satisfies

τ1 >
√

3 τ3τ4 ∧ (3τ1 − 2τ2)2τ3 + 3(τ2
2 − τ2

3 )τ4 > 9τ3τ
2
4 . (5)

The previous result is an effective non-SAS witness because the only un-
detected non-SAS states all have a negativity of order 10−4 at most. Nu-
merical calculations suggest that Obs. 1 gives the proper radii rSAS and
RSAS (equality reached in the yellow points p1 and p4 of Fig. 3)

rSAS ≤ 1/2
√

19 RSAS ≤
√

3/10

Fig. 3: Maximum negativity in the SU(4)-orbit of ρS ∈ B
(
H∨3

2
)

in
the (τ2, τ3, τ4) simplex for τ4 = 0, 1/10, 3/20, 7/38. The pink points
are SAS states calculated numerically. See Ref. [2] for more details.
The contour curves denote where the maximum negativity is equal to
0.8, 0.6, 0.4, 0.2, 0.1, respectively. The yellow points p1 and p4 correspond
to the eigenvalues (τ1, τ2, τ3, τ4) = (3, 3, 3, 1)/10 and (13, 9, 9, 7)/38.


