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Summary

Non-cooperative games involving multiple players exhibit equilibria wherein no player
has an incentive to deviate from their strategy

The quality of an equilibrium can be quantified by its social welfare – the mean payoff
each player receives

Access to shared quantum resources may allow better cooperation, and hence better
equilibria

We consider two scenarios: in one, players may make measurements directly on a
quantum state, while in the other, they delegate the measurement to a referee

We compare the classes of equilibria obtainable in each setting as well as their
maximal social welfare as a function of the bias of the game

Non-cooperative games

A non-cooperative game G between n players is defined by:

A set of questions T ⊆ {0, 1}n
A prior distribution Π over the questions T

A set of valid answers A = {0, 1}n
A payoff function ui for each player i, with ui(a, t) ∈ R.

We consider payoff functions with the form

ui(a, t) =


0 if (a, t) /∈ W
v0 if ai = 0 and (a, t) ∈ W
v1 if ai = 1 and (a, t) ∈ W ,

with v0, v1 > 0 and W ⊆ A× T a set of “winning input-output pairs”
Ratio v0/v1 controls the bias of game

Example: Winning conditions for two 5-player games: NC00(C5) and NC01(C5) [1]

Question
t1t1t2t3t5

Winning condition, NC00(C5)

10000 a4 ⊕ a0 ⊕ a1 = 0
01000 a0 ⊕ a1 ⊕ a2 = 0
00100 a1 ⊕ a2 ⊕ a3 = 0
00010 a2 ⊕ a3 ⊕ a4 = 0
00001 a3 ⊕ a4 ⊕ a0 = 0
11111 a0 ⊕ a1 ⊕ a2 ⊕ a3 ⊕ a4 = 1

Question
t1t1t2t3t5

Winning condition, NC01(C5)

10100 a4 ⊕ a0 ⊕ a1 = 0
01010 a0 ⊕ a1 ⊕ a2 = 0
00101 a1 ⊕ a2 ⊕ a3 = 0
10010 a2 ⊕ a3 ⊕ a4 = 0
01001 a3 ⊕ a4 ⊕ a0 = 0
11111 a0 ⊕ a1 ⊕ a2 ⊕ a3 ⊕ a4 = 1

Solutions and equilibria

Each player follows a local strategy to produce their answer

In general, they may also have access to a shared correlation in the form of an advice
si provided by a mediator with probability C(s1 . . . sn|r1 . . . rn)
A solution (set of strategies for each player, defined by functions fi and gi) induces a
distribution

P (a|t) =
∑
λ

Λ(λ)
∑

s : ∀i, gi(ti,si,λi)=ai

C(s1 . . . sn|f (t1, λ1) . . . f (tn, λn))

We can generally consider just deterministic strategies

A solution is a Nash equilibrium if no player can increase their mean payoff by
changing their strategy: ∀i ∀ti, ri ∈ Ti ∀µi : Ti × Ai → Ai,∑

t−i,a−i

ui(a, t)P (a|t)Π(t) ≥
∑
t−i,a−i

ui(µi(ti, ai)a−i, t)P (a|rit−i)Π(t)

Nash equilibria play important roles in applications from economics to engineering
Different correlations C lead to different equilibria: Nash (no correlation), Corr
(shared randomness), B.I. (belief invariant, or no-signalling), . . .

For a game G, the social welfare of a solution is

SWG(P ) =
1

n

∑
i

∑
a,t

ui(a, t)P (a|t)Π(t).

Two types of quantum advices

Question: How can quantum resources lead to new equilibria or improve social welfare?

We identify two types of quantum advice leading to different equilibria:

Quantum correlated advice: Advice C is obtained from measurements on a quantum
system:

C(s|r) = Tr
[
ρ(M

(1)
s1|r1 ⊗ · · · ⊗M

(n)
sn|rn)

]
Measurement delegated to mediator, or performed by parties with quantum
“black-boxes”

Shared quantum state [2]: Each player measures a shared quantum state to determine
their output ai

Direct access to quantum resource
Notion of equilibria modified: a player can deviate by choosing any other local

POVM: ∀i ∀ti ∀N (i) = {N (i)
ai|ri}ri∑

t−i,a

ui(a, t) Tr
(
ρ ·

⊗
j

M
(j)
aj|tj

)
Π(t) ≥

∑
t−i,a

ui(a, t) Tr
(
ρ ·

⊗
j ̸=i

M
(j)
aj|tj ⊗N

(i)
ai|ti

)
Π(t)

Classical access – Qcorr(G) Quantum access – Q(G)

For any game G, the sets of equilibria satisfy

Nash(G) ⊂ Corr(G) ⊂ Q(G) ⊂ Qcorr(G) ⊂ B.I.(G) ⊂ Comm(G)

We show using self-testing methods [3] that for some game G, Q(G) ⊊ Qcorr(G)

Players who delegate quantum measurements can reach more equilibria!

Results: Social welfare of different solutions

We optimised the social welfare over different solutions classes for three types of
games: NC00(C5), NC01(C5), and NC(C3) (not shown here) [1]

Best classical SW: computed exactly
Graph state SW: pseudo-telepathic equilibria using GHZ states [1]
Seesaw lower bound: numerical optimisation by iterating SDPs to find explicit
solutiobs lower-bounding QSW over Q(G) and Qcorr(G)
NPA upper bound: SDP hierarchy providing dimension-independent upper
bound on equilibria in Qcorr(G) [4]
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Conclusions and open questions

Two different ways to use quantum resources lead to distinct classes of equilibria

A strict separation between Q(G) and Qcorr(G)

Quantum social welfare can be improved beyond pseudo-telepathic solution

Method to directly obtain upper bounds on Q(G)?
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