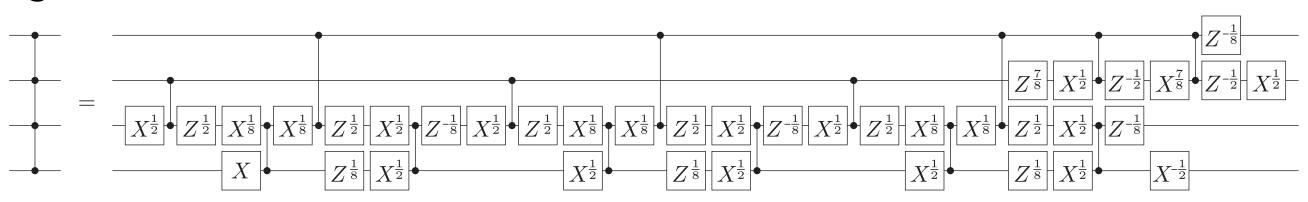
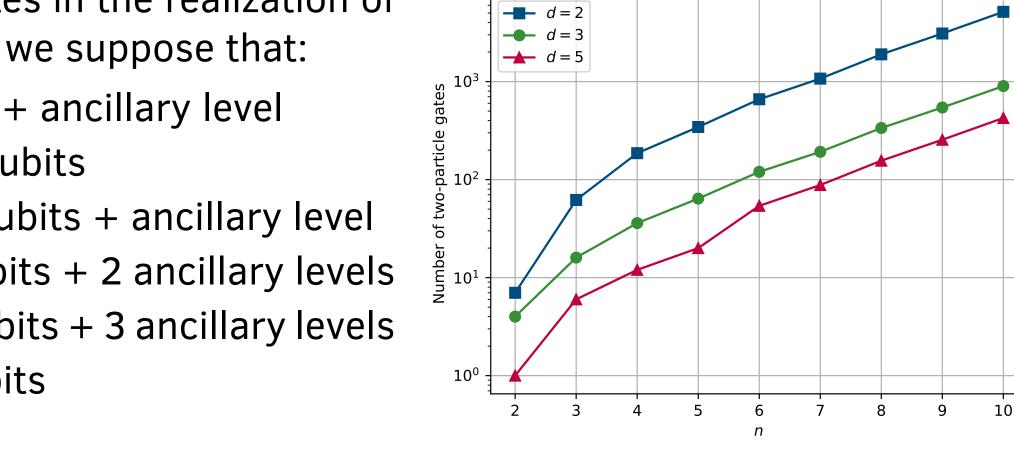
Realizing Quantum Algorithms on Qubits Embedded into Trapped-Ion Qudits

Anastasiia S. Nikolaeva 1,2 , E. O. Kiktenko 1,2 , A. K. Fedorov 1,2


¹Russian Quantum Center, Skolkovo, Moscow, Russia ²National University of Science and Technology "MISIS", Moscow, Russia

Qudits for quantum computing


 Physical systems, used as qubits in quantum computing, have naturally more than 2 levels. Therefore, they can be considered as d-level quantum systems – qudits.

- Two prototypes of qudit-based processors on trapped-ions were presented last year [1,2].
- Like qubit-based ones, they operate with single- and two-particle gates, and the fidelity of the two-particle gates is lower.
- Substantial number of two-particle gates appears in multi-qubit gate decompositions.
- Best known 4-qubit C3X gate decomposition [3] requires 14 two-qubit gates.

- Qudits allow reducing the number of two-particle gates in the realization of qubit circuits, if we suppose that:
- Qutrit = qubit + ancillary level
- Ququart = 2 qubits
- Ququint = 2 qubits + ancillary level
- -Quhex = 2 qubits + 2 ancillary levels
- Qusept = 2 qubits + 3 ancillary levels
- -Quoct = 3 qubits

two-particle gates in Grover's algorithm

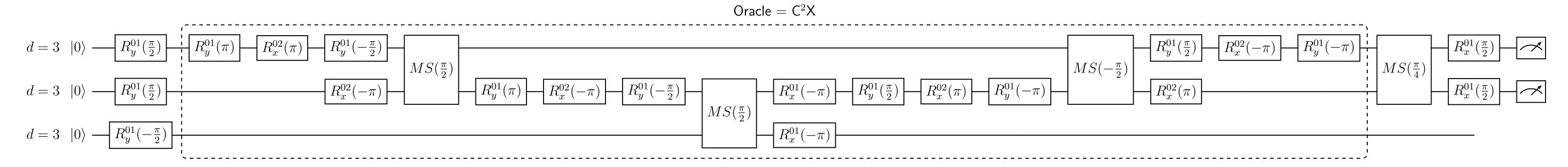
• In this work, we develop a set of methods for compiling quantum algorithms on qubits embedded in trapped-ion qudits with $d \in \{3, \dots, 8\}$.

Basic gates for ion-based qudits

Single-qudit gates:

$$R_{arphi}^{lpha,eta}(heta) = \exp(-\imath heta \sigma_{arphi}^{lpha,eta}/2)$$

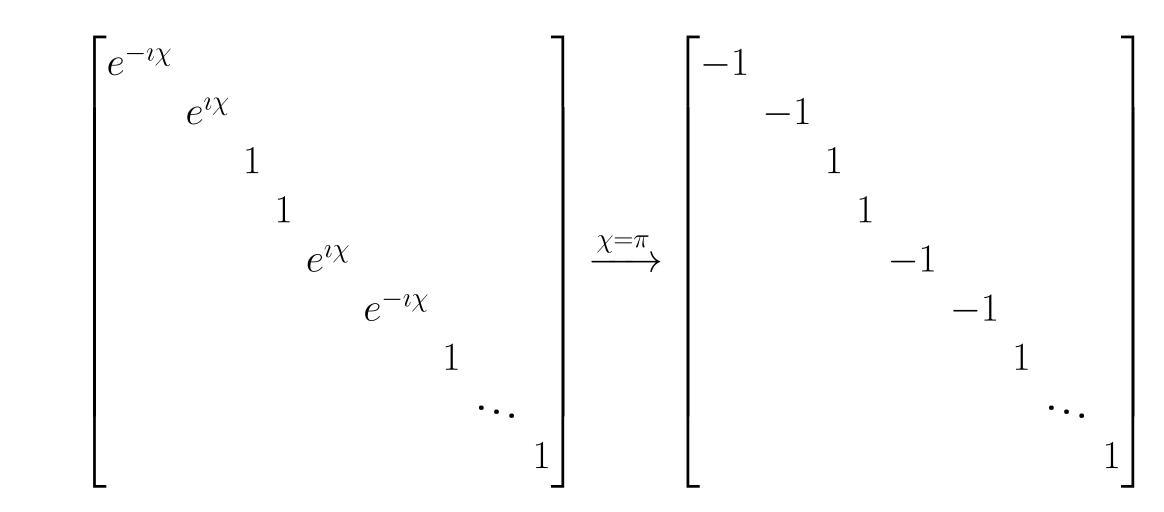
where $\varphi \in \{x,y,z\}$, $\sigma_{\varphi}^{\alpha,\beta}$ – extended Pauli matrices, and α,β indicate transition in the qudit, i.e. $\sigma_x^{02} = |0\rangle\langle 2| + |2\rangle\langle 0|$.

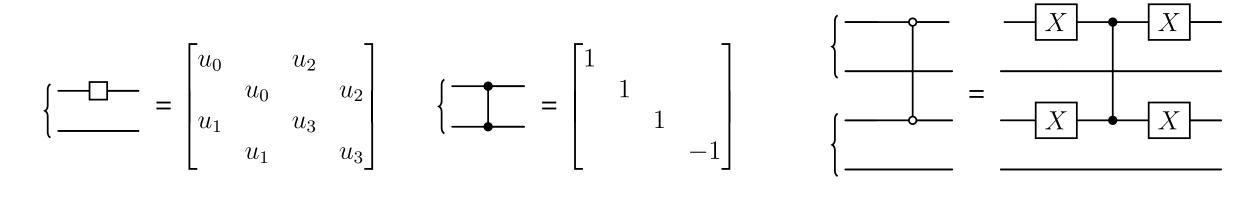

Two-qudit Mølmer–Sørensen gate:

$$\mathsf{MS}(\chi) = \mathsf{exp}\left(-\imath[\sigma_x^{0,1}\otimes\sigma_x^{0,1}]\chi
ight)$$

• Due to additional phases on higher levels, standard qubit decompositions cannot be used in a straightforward way.

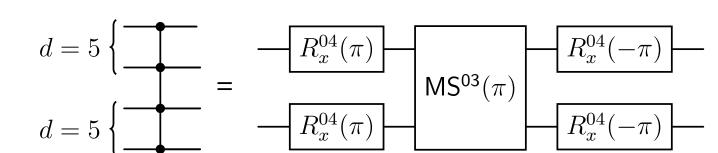
Algorithms on qubits embedded into trapped-ion qutrits


- Single-qubit gates are implemented in the qubit subspace of a qutrit.
- Two-qubit gates are implemented as a sequence of $\mathsf{MS}(\chi)$ and $R^{lpha,eta}_{\omega}(heta)$ gates $(\alpha, \beta \in \{0, 1\}).$
- The third level of a qutrit is used only for multi-qubit gate decompositions.
- N-qubit Toffoli gate $C^{N-1}X$ can be realized with 2N-3 MS $(\pi/2)$ gates [4].


Grover's algorithm circuit for finding $\omega = 11$.

Circuits on qubits embedded into ququarts

ullet MS $(\chi) o \exp\left(-\imath [\sigma_z^{0,1} \otimes \sigma_z^{0,1}]\chi
ight) \stackrel{d=4}{\longrightarrow}$


• Native $MS(\pi)$ operation on ququarts corresponds to two-qubit gate between two qubits, located in different qudits:

- On the basis of $\mathsf{MS}(\pi)$ with $R_{\omega}^{\alpha,\beta}(\theta)$ gates CZ gate between arbitrary pair of qubits in different ququarts can be obtained.
- CZ gate between two qubits in a singe ququart is implemented as a sequence of singe-qudit $R^{\alpha,\beta}_{\omega}(\theta)$ gates.
- Knowing how to implement CZ gate between any pair of qubits in ququarts, standard qubit decomposition of multi-qubit gates can be used as a template.
- An ability to realize arbitrary single-qubit gates and two-qubit CZ gate in every qubits' pair provides the basis for the universal quantum computation.
- 4-qubit Toffoli gate can be implemented with 6 two-ququart $MS(\pi)$ gates, if decomposition [3] is used as a template.

Circuits on qubits in high-dimensional qudits

- 5-level and 6-level qudits' spaces can be considered as a space of two qubits with 1 and 2 ancillary levels correspondingly.
- Single- and two-qubit gates in this case are implemented similarly to the ququart case.
- C³Z gate can be realized via a single two-ququint $MS^{03}(\pi)$ gate.

- The highest $|4\rangle = |anc_0\rangle$ and $|5\rangle = |anc_1\rangle$ levels of a 6-level qudit can be used as ancillary states to provide ladder-like decomposition of a Nqubit gate with N-3 or N-2 two-qudit $MS(\pi)$ gates.
- Two-quoct (d=8) gate MS(π) with single-qudit rotations realize 4-qubit C³Z gate on two pairs of qubits located in different quocts.

Conclusion & Outlook

- We develop a set of methods for the realization of qubit quantum algorithms on ion-based qudits of various dimensions.
- The main feature of our methods is the use of two-qudit $MS(\chi)$ and single-qudit $R_{\omega}^{lpha,eta}(heta)$ gates in the multi-qubit gate decompositions, which are directly executed on the trapped-ion platform.

References

- [1] Ringbauer, M., et al. A universal qudit quantum processor with trapped ions. Nature Physics, 18(9), 1053-1057 (2022).
- [2] Aksenov, M. A., et al. Realizing quantum gates with optically-addressable 171 Yb $^+$ ion qudits. Phys. Rev. A 107, 052612 (2023)
- [3] Nakanishi, K. M., et al. Quantum-gate decomposer. e-print: arXiv:2109.13223 (2021).
- [4] Nikolaeva, A. S., et al. Compiling quantum circuits with qubits embedded in trapped-ion qudits. e-print: arXiv:2302.02966 (2023).

The work was supported by RSF grant No. 19-71-10091.