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Why hybrid classes?

1.
2.
3.

QO(1) 6⊆ Co(log).1

QO(1) 6⊆ BPP, assuming non-collapse of PH.2

Factoring, Discrete-log, Pell’s equation ∈ CQlog,QCO(1).3

Jozsa’s conjecture4 (reformulated)
CQCpolylog = BQP.

1[Bravyi, Gosset, König, 2017]
2[Terhal, DiVicenzo, 2002], [Haferkamp et al., 2019]
3[Cleve, Watrous, 2000], [Høyer, Špalek, 2005]
4[Jozsa, 2005]
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Limitations of hybrid models

Aaronson’s challenge5

Does there exist an oracle relative to which Jozsa’s conjecture is
false? Can the oracle then be instantiated?

Relativized/oracle/black-box models: given access to a function f .
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Limitations of hybrid models

Relativized quantum depth separation6

There exists a function, f , such that CQfpolylog ∪ QC
f
polylog ( BQPf .

f has a special property that can only be found by querying it
quantumly, sequentially Ω(n) times.

Relativized separation of hybrids7

There exist functions, f1, f2, such that

• QCf1polylog 6⊆ CQf1O(1)
• CQf2polylog 6⊆ QCf2O(1)

• Functions have very special structure (structured oracles).
• No known instantiations.
• Any instantiation should have at most O(polylog(n)) depth.

6[Chia, Chung, Lai, 2020], [Coudron, Menda, 2020]

7[Arora, G, Singh, 2021]
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The (quantum) random oracle model (QROM)

Random oracle = uniformly random (boolean) function.

Random oracle model = given access to a random oracle.

RO

OWF P 6= NP

Symmetric-
key crypto

Commitments

Public-key crypto

Inherently structureless.

Heuristic: can instantiate RO with a hash function (like SHA256).

(which can be implemented in log depth)
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Our results

Unstructured quantum depth separation
Relative to a random f and for any d(n) < poly(n), we have that:

1. Qfd ( CQfd ( CQCfd and Q
f
d ( QCfd ( CQCfd.

2. CQCfd ( BQPf

3. QCfO(1) 6⊆ CQfd and CQ
f
O(1) 6⊆ QCfd.
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Intuition for CQCfd ( BQPf

Take any problem that separates BPPf and BQPf .

E.g. Fourier Sampling8

Output y ∈ {0, 1}n with probability

Pr(y) =

∣∣∣∣∣∣ 1
2n/2

∑
x∈{0,1}n

(−1)x·y
∣∣∣∣∣∣
2

Consider d+ 1 random oracles f0, f1, ... fd.
(for instance by splitting f into d+ 1 functions)

Redefine the problem with respect to f̃ = fd ◦ fd−1 ◦ ... ◦ f0.

Observation: New problem is still in BQPf .

Claim: New problem is not in CQCfd.

8[Aaronson, 2009]
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Intuition for CQCfd ( BQPf

1. We know that the problem 6∈ BPPf .

2. Hybrid argument + one-way to hiding lemma→ problem 6∈ Qfd.
3. Carefully combining 1 and 2→ problem 6∈ QCfd.
4. Sampling argument together with 1 and 2→ problem 6∈ CQfd.
5. Carefully combining 3 and 4→ problem 6∈ CQCfd.

Can use the recent problem of Yamakawa and Zhandry.9

That problem is also in NPf (efficiently verifiable).

9[Yamakawa, Zhandry, 2022]
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Proofs of quantum depth

We obtain a proof of d quantum depth protocol.10

Verifier

Completeness
There is a BQP prover that makes the verifier accept whp.

Soundness
No CQCd prover can make the verifier accept whp (in the QROM).

10[Chia, Hung, 2022]
11



Proofs of quantum depth

We obtain a proof of d quantum depth protocol.10

Verifier Prover

Completeness
There is a BQP prover that makes the verifier accept whp.

Soundness
No CQCd prover can make the verifier accept whp (in the QROM).

10[Chia, Hung, 2022]
11



Proofs of quantum depth

We obtain a proof of d quantum depth protocol.10

Verifier BQP prover

Completeness
There is a BQP prover that makes the verifier accept whp.

Soundness
No CQCd prover can make the verifier accept whp (in the QROM).

10[Chia, Hung, 2022]
11



Proofs of quantum depth

We obtain a proof of d quantum depth protocol.10

Verifier CQCd prover

Completeness
There is a BQP prover that makes the verifier accept whp.

Soundness
No CQCd prover can make the verifier accept whp (in the QROM).

10[Chia, Hung, 2022]
11



Conclusions and open problems

• Unstructured separations of hybrid models.

• Refuting Jozsa’s conjecture in the random oracle model.

• Intermediate measurements provide a computational advantage.
• Sampling and search problems not decision problems
(Aaronson-Ambainis conjecture).

• Proof of quantum depth.

• Can separations be based on standard crypto assumptions?
• Are there natural separating problems? (fast-forwarding Hamiltonians)
• What about CQCQCQ...Cd?
• Fine-grained proofs of quantum depth.

Thanks!
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