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Introduction: Quantum Learning Theory

Classical learning problems:

Given iid copies of an unknown random variable X , tell me something
about X

Examples:
1 Finding mean, variance etc.
2 Finding any model for prediction (training data = samples)

Sample Complexity : number of copies/samples of X needed
For instance: Θ( 1

ϵ2
) samples for finding mean upto ϵ error
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Introduction: Quantum Learning Theory

Quantum Analogue:

Given iid copies of a Quantum State ρ, tell me something about ρ.

Example: State tomography: Give a ρ′ ≈ϵ ρ. Needs Θ(d
2

ϵ2
)

samples[HHJ+17].

Freedom to choose measurements, including entangled measurements.
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An aside: Quantum Machine Learning

This is NOT QML:

QML looks at computational advantage to solve classical problems

We look at the predictive power of the states themselves.
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Our work

We show lower bounds for the following problems:
1 Quantum PAC Learning
2 Quantum Agnostic Learning
3 Quantum Coupon Collector

1 and 2 shown by Arunachalem and de Wolfe[AdW18]

3 shown by Arunachalam, Belovs, Childs, Kothari, Rosmanis, and de
Wolf [ABC+20]

Found lower bound with optimal leading term for QCC.
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Quantum PAC Learning
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PAC learning

PAC learning[Val84] : (Informal)

Given an unknown binary function f ∈ F and random samples of f
over any distribution of its domain, find an ϵ approximation of f over

the same distribution.

Random sample: (x , f (x)) with probability px .

Well studied classically[Han16, BEHW89], sample complexity is
Θ
(
d
ϵ

)
, d is the VC-dimension of F .
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Quantum PAC learning

Quantum PAC learning: use Quantum Samples instead [BJ98]

|ψf ⟩ =
∑√

px |x⟩ |f (x)⟩

Atleast as powerful as random samples.

Theorem (Quantum PAC learning lower bound(Simplified))

Sample complexity for Quantum PAC learning is Ω(dϵ )

For simplicity:
F = {f : Nd+1 → {0, 1}, f (0) = 0}

indexed by a ∈ {0, 1}d with f (i) = ai .

p0 = 1− 4ϵ, pi =
4ϵ

d
∀i ∈ [d ]

10 / 30



Quantum PAC learning

Quantum PAC learning: use Quantum Samples instead [BJ98]

|ψf ⟩ =
∑√

px |x⟩ |f (x)⟩

Atleast as powerful as random samples.

Theorem (Quantum PAC learning lower bound(Simplified))

Sample complexity for Quantum PAC learning is Ω(dϵ )

For simplicity:
F = {f : Nd+1 → {0, 1}, f (0) = 0}

indexed by a ∈ {0, 1}d with f (i) = ai .

p0 = 1− 4ϵ, pi =
4ϵ

d
∀i ∈ [d ]

10 / 30



Quantum PAC learning

Quantum PAC learning: use Quantum Samples instead [BJ98]

|ψf ⟩ =
∑√

px |x⟩ |f (x)⟩

Atleast as powerful as random samples.

Theorem (Quantum PAC learning lower bound(Simplified))

Sample complexity for Quantum PAC learning is Ω(dϵ )

For simplicity:
F = {f : Nd+1 → {0, 1}, f (0) = 0}

indexed by a ∈ {0, 1}d with f (i) = ai .

p0 = 1− 4ϵ, pi =
4ϵ

d
∀i ∈ [d ]

10 / 30



Quantum PAC learning

Quantum PAC learning: use Quantum Samples instead [BJ98]

|ψf ⟩ =
∑√

px |x⟩ |f (x)⟩

Atleast as powerful as random samples.

Theorem (Quantum PAC learning lower bound(Simplified))

Sample complexity for Quantum PAC learning is Ω(dϵ )

For simplicity:
F = {f : Nd+1 → {0, 1}, f (0) = 0}

indexed by a ∈ {0, 1}d with f (i) = ai .

p0 = 1− 4ϵ, pi =
4ϵ

d
∀i ∈ [d ]

10 / 30



Quantum PAC learning

Quantum PAC learning: use Quantum Samples instead [BJ98]

|ψf ⟩ =
∑√

px |x⟩ |f (x)⟩

Atleast as powerful as random samples.

Theorem (Quantum PAC learning lower bound(Simplified))

Sample complexity for Quantum PAC learning is Ω(dϵ )

For simplicity:
F = {f : Nd+1 → {0, 1}, f (0) = 0}

indexed by a ∈ {0, 1}d with f (i) = ai .

p0 = 1− 4ϵ, pi =
4ϵ

d
∀i ∈ [d ]

10 / 30



Quantum PAC learning

Quantum PAC learning: use Quantum Samples instead [BJ98]

|ψf ⟩ =
∑√

px |x⟩ |f (x)⟩

Atleast as powerful as random samples.

Theorem (Quantum PAC learning lower bound(Simplified))

Sample complexity for Quantum PAC learning is Ω(dϵ )

For simplicity:
F = {f : Nd+1 → {0, 1}, f (0) = 0}

indexed by a ∈ {0, 1}d with f (i) = ai .

p0 = 1− 4ϵ, pi =
4ϵ

d
∀i ∈ [d ]

10 / 30



Quantum PAC learning

Quantum PAC learning: use Quantum Samples instead [BJ98]

|ψf ⟩ =
∑√

px |x⟩ |f (x)⟩

Atleast as powerful as random samples.

Theorem (Quantum PAC learning lower bound(Simplified))

Sample complexity for Quantum PAC learning is Ω(dϵ )

For simplicity:
F = {f : Nd+1 → {0, 1}, f (0) = 0}

indexed by a ∈ {0, 1}d with f (i) = ai .

p0 = 1− 4ϵ, pi =
4ϵ

d
∀i ∈ [d ]

10 / 30



Data Processing inequality

Theorem (Data processing inequality)

Given a state ρ in Quantum Registers A,B, and any channel χ for B, we
have:

I (A : B) ≥ I (A : χ(B))

In our setting,

1 A holds index a for Quantum Samples

2 B holding t copies of corresponding quantum samples

3 χ is Learner, for learning A from B.

I (A : χ(B)) is related to correctness, while I (A : B) is increasing in the
number of samples.

I (A : χ(B)) classical, need upper bound on I (A : B).
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Proof Outline

Fix a distribution of a

Find spectrum of ρB

Find expression for S(B)

Upper bound S(B) by treating S(B) as expectation.
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Spectrum of ρB

ρB =
1

2d

∑
a∈{0,1}d

|ψa⟩⟨ψa|⊗t

=
1

2d

∑
a∈{0,1}d ,x,y∈Nt

d+1

√
pxpy |x⟩⟨y| ⊗ |ax⟩⟨ay|

Block diagonalizes after applying I ⊗ H⊗t

Block for b ∈ {0, 1}d has eigenvalue

λb =
1

2t

∑
c∈{0,1}t
x∈Nt

d+1

ps(xc)=b

px

λb is function of |b|, mutliplicity is l|b| =
( d
|b|
)

13 / 30



Spectrum of ρB

ρB =
1

2d

∑
a∈{0,1}d

|ψa⟩⟨ψa|⊗t

=
1

2d

∑
a∈{0,1}d ,x,y∈Nt

d+1

√
pxpy |x⟩⟨y| ⊗ |ax⟩⟨ay|

Block diagonalizes after applying I ⊗ H⊗t

Block for b ∈ {0, 1}d has eigenvalue

λb =
1

2t

∑
c∈{0,1}t
x∈Nt

d+1

ps(xc)=b

px

λb is function of |b|, mutliplicity is l|b| =
( d
|b|
)

13 / 30



Spectrum of ρB

ρB =
1

2d

∑
a∈{0,1}d

|ψa⟩⟨ψa|⊗t

=
1

2d

∑
a∈{0,1}d ,x,y∈Nt

d+1

√
pxpy |x⟩⟨y| ⊗ |ax⟩⟨ay|

Block diagonalizes after applying I ⊗ H⊗t

Block for b ∈ {0, 1}d has eigenvalue

λb =
1

2t

∑
c∈{0,1}t
x∈Nt

d+1

ps(xc)=b

px

λb is function of |b|, mutliplicity is l|b| =
( d
|b|
)

13 / 30



Spectrum of ρB

ρB =
1

2d

∑
a∈{0,1}d

|ψa⟩⟨ψa|⊗t

=
1

2d

∑
a∈{0,1}d ,x,y∈Nt

d+1

√
pxpy |x⟩⟨y| ⊗ |ax⟩⟨ay|

Block diagonalizes after applying I ⊗ H⊗t

Block for b ∈ {0, 1}d has eigenvalue

λb =
1

2t

∑
c∈{0,1}t
x∈Nt

d+1

ps(xc)=b

px

λb is function of |b|, mutliplicity is l|b| =
( d
|b|
)

13 / 30



Spectrum of ρB

ρB =
1

2d

∑
a∈{0,1}d

|ψa⟩⟨ψa|⊗t

=
1

2d

∑
a∈{0,1}d ,x,y∈Nt

d+1

√
pxpy |x⟩⟨y| ⊗ |ax⟩⟨ay|

Block diagonalizes after applying I ⊗ H⊗t

Block for b ∈ {0, 1}d has eigenvalue

λb =
1

2t

∑
c∈{0,1}t
x∈Nt

d+1

ps(xc)=b

px

λb is function of |b|, mutliplicity is l|b| =
( d
|b|
)

13 / 30



Spectrum of ρB

ρB =
1

2d

∑
a∈{0,1}d

|ψa⟩⟨ψa|⊗t

=
1

2d

∑
a∈{0,1}d ,x,y∈Nt

d+1

√
pxpy |x⟩⟨y| ⊗ |ax⟩⟨ay|

Block diagonalizes after applying I ⊗ H⊗t

Block for b ∈ {0, 1}d has eigenvalue

λb =
1

2t

∑
c∈{0,1}t
x∈Nt

d+1

ps(xc)=b

px

λb is function of |b|, mutliplicity is l|b| =
( d
|b|
)

13 / 30



Expression for S(B)

With the above, S(B) looks like

S(B) =
d∑

i=0

liλi log
1

λi
=

d∑
i=0

(liλi ) · [log li ] + O(log(d + 1))

=
d∑

h=0


1

2t

(
d

h

) ∑
c∈{0,1}t
x∈Nt

d+1

|ps(xc)|=h

px

 log

(
d

h

)
+ O(log(d + 1))

Suffices to show concentration of h away from d
2 .
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Quantum Coupon Collector

15 / 30



Coupon Collector Problem

Simple definition:

Given random coupon out of k at each step, how many steps until each
collected atleast once?

Becomes harder to collect “new” coupons.

The answer is k ln k +Θ(k), and has a very simple analysis.

Can think of “learning” the set of coupons.
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Can define Xt := number of coupons collected as a random walk.
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Quantum Coupon Collector

Let S ⊆ Nn be the set of coupons. (|S | = k)

QCC is learning S with quantum samples

|ψS⟩ =
1√
k

∑
i∈S

|i⟩

Complexity is Θ(k log(min(k , n − k + 1)))[ABC+20]

We only consider m := k − n << n

ρB =
1(n
k

) ∑ |ψS⟩⟨ψS |⊗t
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Spectrum of ρB

Spectrum matches with matrix Mt

Mt [S ,S
′] =

1(n
k

)⟨ψS |ψS ′⟩t

Using a matrix recurrence in [ABC+20], we get a recurrence for the
spectrum (related to a random walk W on Nm+1)

lsλs,t = ps,0
(
lsλs,t−1

)
+ ps−1,+1

(
ls−1λs−1,t−1

)
+ ps+1,−1

(
ls+1λs+1,t−1

)
where s ∈ {1 . . .m}, ls =

(n
s

)
−
( n
s−1

)
, pi ,j refers to transition probability in

W of moving from i → i + j
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Random Walk W

lsλs,t = ps,0
(
lsλs,t−1

)
+ ps−1,+1

(
ls−1λs−1,t−1

)
+ ps+1,−1

(
ls+1λs+1,t−1

)

=⇒ Pr[Wt = s] = lsλs,t

s − 1 s s + 1

≤ m2

n2
m−s
n

1− m−s
n

W very closely approximates a variant of coupon collector.
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Random Walk W and S(B)

s − 1 s s + 1

≤ m2

n2
m−s
n

1− m−s
n

Can think of: out of n coupons, mark m, count number of marked
coupons collected. Now,

S(B) =
∑

lsλs,t log ls + O(log(m + 1))

≈ log(n) ·
∑

(lsλs,t) · s = log n · E[Wt ]
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Catch

Good hold on I (A : B), but I (A : χ(B)) can be too small.

Reason: working algorithms exist which “throw away” information

Consider a working sample efficient algorithm:

1 Use the algorithm to get a guess S ′

2 Check correctness of S ′ (sample efficient)

3 If S ′ correct, output S ′, else output garbage.

This throws away correlation between S and S ′ when S ′ ̸= S .

22 / 30



Catch

Good hold on I (A : B), but I (A : χ(B)) can be too small.

Reason: working algorithms exist which “throw away” information

Consider a working sample efficient algorithm:

1 Use the algorithm to get a guess S ′

2 Check correctness of S ′ (sample efficient)

3 If S ′ correct, output S ′, else output garbage.

This throws away correlation between S and S ′ when S ′ ̸= S .

22 / 30



Catch

Good hold on I (A : B), but I (A : χ(B)) can be too small.

Reason: working algorithms exist which “throw away” information

Consider a working sample efficient algorithm:

1 Use the algorithm to get a guess S ′

2 Check correctness of S ′ (sample efficient)

3 If S ′ correct, output S ′, else output garbage.

This throws away correlation between S and S ′ when S ′ ̸= S .

22 / 30



Catch

Good hold on I (A : B), but I (A : χ(B)) can be too small.

Reason: working algorithms exist which “throw away” information

Consider a working sample efficient algorithm:

1 Use the algorithm to get a guess S ′

2 Check correctness of S ′ (sample efficient)

3 If S ′ correct, output S ′, else output garbage.

This throws away correlation between S and S ′ when S ′ ̸= S .

22 / 30



Catch

Good hold on I (A : B), but I (A : χ(B)) can be too small.

Reason: working algorithms exist which “throw away” information

Consider a working sample efficient algorithm:

1 Use the algorithm to get a guess S ′

2 Check correctness of S ′ (sample efficient)

3 If S ′ correct, output S ′, else output garbage.

This throws away correlation between S and S ′ when S ′ ̸= S .

22 / 30



Catch

Good hold on I (A : B), but I (A : χ(B)) can be too small.

Reason: working algorithms exist which “throw away” information

Consider a working sample efficient algorithm:

1 Use the algorithm to get a guess S ′

2 Check correctness of S ′ (sample efficient)

3 If S ′ correct, output S ′, else output garbage.

This throws away correlation between S and S ′ when S ′ ̸= S .

22 / 30



Catch

Good hold on I (A : B), but I (A : χ(B)) can be too small.

Reason: working algorithms exist which “throw away” information

Consider a working sample efficient algorithm:

1 Use the algorithm to get a guess S ′

2 Check correctness of S ′ (sample efficient)

3 If S ′ correct, output S ′, else output garbage.

This throws away correlation between S and S ′ when S ′ ̸= S .

22 / 30



Catch

Good hold on I (A : B), but I (A : χ(B)) can be too small.

Reason: working algorithms exist which “throw away” information

Consider a working sample efficient algorithm:

1 Use the algorithm to get a guess S ′

2 Check correctness of S ′ (sample efficient)

3 If S ′ correct, output S ′, else output garbage.

This throws away correlation between S and S ′ when S ′ ̸= S .

22 / 30



Proof Using Holevo-Curlander bounds

Theorem (HC-bound [Tys10](simplified))

For N equiprobable pure states, with density matrix ρ, then the
simultaneous distinguishablity is upper bounded by

1√
N
Tr(

√
ρ)

In our case, the upper bound is

1√(n
m

) ∑ ls
√
λs,t ≈

√
lm(n
m

) ·
√
lmλm,t

Theorem (Lower Bound for QCC)

Sample complexity of QCC is (1− o(1))k ln(min k , n − k + 1).
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Conclusion and Additional Points

Quantum PAC learning lower bounds using information theory

Quantum Agnostic learning very similar to PAC learning

Can try to use this method on other problems considered in [AdW18]

Doesnt work directly on Quantum Coupon Collector

Works if working with approximation variant of coupon collector

Obtained spectrum gives optimal lower bound with HC Bound
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End

Thank You!
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