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Quantum Noise Characterization: 
learn the noise in quantum devices

Noise: The challenge 
for practical quantum 
computing systems

* Figure from quantum-computing.ibm.com



Why noise characterization?

Google, Nature 2019

Understanding and improving hardware Effective error mitigation and correction schemes

E Berg et al., IBM, arXiv 2201.0986 Q Xu et al., Phys. Rev. Research 5, 013035



• Circuit-level noise characterization:

• Problems for tomography-based method …

Learning the noise
!𝒰

State preparation (SP) Measurement (M)Gate
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Process tomography State tomography Detector tomography



• Circuit-level noise characterization:

• Problems for tomography-based method …

• All are noisy! SPAM noise can be non-negligible. 

• Question: what (if anything) can be reliably learned about the noise?

Learning the noise
!𝒰

State preparation (SP) Measurement (M)Gate

!"
ibm_washington, 22-03-08 



Randomized benchmarking (RB)

Randomized Benchmarking, Qiskit Textbook

!"! !""

!"! !"#…

…

• Separate average gate fidelity from SPAM noise .
• Need strong assumptions: gate-independent noise for Clifford
• Difficulty arises with gate-dependent noise



even with perfect 
unitary controlGauge freedom

|0⟩ 𝑀!

Experiments

Pr[|1⟩] = 2%, so…

Observer

*Assume depolarizing noise (for simplicity)

Gauge freedom1% 1%

2% 0%

2%0%

…
…

Indistinguishable!



Gauge transform
• Noisy gateset (SPAM+gate):

• Gauge transform map (invertible):

• Gauge transform:

• Claim:                                     and                                       are indistinguishable

ℳ !"!ℳ!" ℳ ℳ!"

ℳ ℳ!"

!𝒰!

!"!!"!
See, e.g., “Gate set tomography”. E Nielsen et al., Quantum 5, 557 (2021).



Proof of indistinguishability

!𝒰! !𝒰"

!𝒰!ℳ ℳ() ℳ ℳ() !𝒰" ℳ ℳ()

!𝒰!# !𝒰"
#

ℳ
Gauge transform map

Any quantum circuit:

Same outcome statistics



Gauge and noise learnability

• Gauge transform relates indistinguishable noisy gateset
• Needs to preserve physicality (i.e., CPTP)

• Learnable functions: invariant under any gauge transform
• E.g., Idle tomography.

• Unlearnable functions can only be determined up to gauge freedom
• (though they have deterministic underlying values!)

Gauge freedom

…

!"!

!"!ℱ( .𝒢)

ℱ( .𝒢)



Why care about noise learnability?

• Recall the two applications of noise characterization

Hardware improvement Software improvement
Unlearnability prevent accurate

identification of noise source

(E.g., improving initialization or measurements?)

Important to know all learnable degrees of 
freedom for, e.g., accurate error mitigation.

?

See also “Foundations for learning from noisy quantum experiments”. Huang, Flammia, Preskill. arXiv 2204.13691

!"! !""



Summary of results

• We precisely characterize the learnable degrees of freedom for Pauli noise model
• We give explicit protocol to estimate all learnable information of noise
• Experimental results highlight the practical significancy of noise unlearnability.
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• Pauli channel - two equivalent definitions:
Λ 𝜌 = 3

#∈%!
𝑝#𝑃#𝜌𝑃# = 3

&∈%!
𝜆&𝑃& Tr[𝜌𝑃&]/2'

• 𝑃# ∈ P( ≡ 𝐼, 𝑋, 𝑌, 𝑍 ⊗' −	n-qubit Pauli operator.  
• 𝑝# #  – Pauli error rates.	 𝜆& &– Pauli fidelities. 

Fig. 8.9, Nielsen & Chuang

𝐼 𝑋 𝑌 𝑍

𝑝 0.7 0 0 0.3

𝜆 1 0.4 0.4 1

Pauli channel

E.g., Phase-flip noise channel

Shrinkage rate on axis 𝑃!



Pauli noise model

• Noise assumption (𝑛-qubit system):
1) Single-qubit unitary: noiseless
2) Multi-qubit Clifford: 𝑛-qubit gate-

dependent Pauli noise .𝒢 = 𝒢 ∘ Λ𝒢.
3) SPAM: unknown Pauli noise
4) Noise not too large: 𝜆# > 0, ∀𝑎

• Standard for randomized compiling
• Λ𝒢	can be interpreted as dressed noise of a 

cycle of SQ+MQ gates.

J Wallman, J Emerson, Phys. Rev. A 94, 052325 (2016)



Gauge and Learnability of Pauli noise

• Question: Is Λ𝒢  learnable (SPAM-robustly)?

• State-of-the-art: Cycle benchmarking (CB) 
characterizes Λ𝒢  up to some degeneracy 

    [A Erhard et al., Nat. Comm., 10, 5347]

• We gives a complete characterization on 
the learnability of Pauli noise, and 
construct an explicit protocol to learn 
everything learnable. A Hashim et al., 

Phys. Rev. X 11, 041039 (2021)



Main result
• Thm 1 (Individual learnability). 

Given a Clifford 𝒢 and a Pauli 𝑃#, the Pauli fidelity 𝜆#
𝒢  is 

learnable iff 𝒢 does not change the pattern of 𝑃#.
• Pattern: 𝑃 ↦ 0,1 " via 𝑋, 𝑌, 𝑍 ↦ 1, 𝐼 ↦ 0
• E.g. for CNOT: 𝜆#$, 𝜆%% is learnable; 𝜆$$, 𝜆$# is unlearnable.

• Thm 2 (Learnable degrees of freedom).

Define log Pauli fidelity 𝑙#
𝒢 ≔ log 𝜆#

𝒢  for all 𝒢, 𝑃#. Any linear 
functions 𝑓 of {𝑙#

𝒢}𝒢,# is learnable iff 𝑓 lives in the cycle 
space of the pattern transform graph for given gateset

• E.g. of CNOT: 𝜆$$𝜆$# is learnable
• 1st-order approximation for any functions, e.g., 𝑝& &
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Pattern transform graph for CNOT



Proof Sketch – Learnable part

1. For 𝒢 𝑃# = 𝑃#, cycle benchmarking (CB) gives SPAM-robust estimate for 𝜆#
𝒢

Pauli measurementStabilizer state preparation

Pauli Twirling



Proof Sketch – Learnable part

1. For 𝒢 𝑃# = 𝑃#, cycle benchmarking (CB) gives SPAM-robust estimate for 𝜆#
𝒢
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Proof Sketch – Learnable part

1. For 𝒢 𝑃# = 𝑃#, CB gives SPAM-robust estimate for 𝜆#
𝒢

CNOT 𝐼𝑋 = 𝐼𝑋
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4𝐼𝑋 = 𝜉',#$	 𝐼𝑋
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𝜉!,#$	 : Pauli Fidelity for measurement noise



Proof Sketch – Learnable part

1. For 𝒢 𝑃# = 𝑃#, CB gives SPAM-robust estimate for 𝜆#
𝒢

𝑃	4𝐼𝑋	𝑃 = ±𝜉',#$	 𝐼𝑋

The ± can be easily corrected, thus omitted
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CNOT 𝐼𝑋 = 𝐼𝑋
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𝜉!,#$	 : Pauli Fidelity for measurement noise



Proof Sketch – Learnable part

1. For 𝒢 𝑃# = 𝑃#, CB gives SPAM-robust estimate for 𝜆#
𝒢

9CNOT† 4𝐼𝑋 = 𝜆#$𝜉',#$	 𝐼𝑋

DCNOT = CNOT ∘ Λ
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CNOT 𝐼𝑋 = 𝐼𝑋
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𝜉!,#$	 : Pauli Fidelity for measurement noise



Proof Sketch – Learnable part

1. For 𝒢 𝑃# = 𝑃#, CB gives SPAM-robust estimate for 𝜆#
𝒢

𝜆#$* 𝜉',#$	 𝐼𝑋
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CNOT 𝐼𝑋 = 𝐼𝑋
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𝜉!,#$	 : Pauli Fidelity for measurement noise



Proof Sketch – Learnable part

1. For 𝒢 𝑃# = 𝑃#, CB gives SPAM-robust estimate for 𝜆#
𝒢

𝜆#$+ 𝜉',#$	 𝐼𝑋>𝜌,

𝐶′′

𝐶′′
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CNOT 𝐼𝑋 = 𝐼𝑋
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𝜉!,#$	 : Pauli Fidelity for measurement noise



Proof Sketch – Learnable part

1. For 𝒢 𝑃# = 𝑃#, CB gives SPAM-robust estimate for 𝜆#
𝒢

𝔼-." 4𝐼𝑋 = 𝜆#$+ 𝜉/,#$	 𝜉',#$	

𝜉&,#$	 ≔ Tr( J𝜌' ∗ 𝐼𝑋) Pauli fidelity of State preparation noise
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CNOT 𝐼𝑋 = 𝐼𝑋
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Proof Sketch – Learnable part

1. For 𝒢 𝑃# = 𝑃#, CB gives SPAM-robust estimate for 𝜆#
𝒢

Expectation value for depth 𝑡: 𝐹NO 𝑡 = 𝜆NOP 𝜉Q,NO	 𝜉R,NO	

SPAM noisegate noise

Fitting F 𝑡 	different 𝑡 gives SPAM-robust estimate for 𝜆#$
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CNOT 𝐼𝑋 = 𝐼𝑋
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𝐶′′

𝐶′′

|0⟩

|0⟩

𝐶′

𝐶′
Λ Λ𝑍

𝑋

𝑍

𝑋

Proof Sketch – Learnable part

2. If 𝒢 𝑃# , 𝑃# have same pattern, there is 1q Clifford 𝐶 such that (𝐶 ∘ 𝒢) 𝑃# = 𝑃#

11 𝜆!"

CNOT 𝑋𝑍 = 𝑌𝑌;
𝑍 ⊗ 𝑋 𝑌𝑌 = 𝑋𝑍

𝜉',$!	 𝑋𝑍



Proof Sketch – Learnable part

2. If 𝒢 𝑃# , 𝑃# have same pattern, there is 1q Clifford 𝐶 such that (𝐶 ∘ 𝒢) 𝑃# = 𝑃#

11 𝜆!"

CNOT 𝑋𝑍 = 𝑌𝑌;
𝑍 ⊗ 𝑋 𝑌𝑌 = 𝑋𝑍
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Proof Sketch – Learnable part

2. If 𝒢 𝑃# , 𝑃# have same pattern, there is 1q Clifford 𝐶 such that (𝐶 ∘ 𝒢) 𝑃# = 𝑃#

11 𝜆!"

CNOT 𝑋𝑍 = 𝑌𝑌;
𝑍 ⊗ 𝑋 𝑌𝑌 = 𝑋𝑍
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Proof Sketch – Learnable part

2. If 𝒢 𝑃# , 𝑃# have same pattern, there is 1q Clifford 𝐶 such that (𝐶 ∘ 𝒢) 𝑃# = 𝑃#

11 𝜆!"

CNOT 𝑋𝑍 = 𝑌𝑌;
𝑍 ⊗ 𝑋 𝑌𝑌 = 𝑋𝑍
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Proof Sketch – Learnable part

2. If 𝒢 𝑃# , 𝑃# have same pattern, there is 1q Clifford 𝐶 such that (𝐶 ∘ 𝒢) 𝑃# = 𝑃#

11 𝜆!"

CNOT 𝑋𝑍 = 𝑌𝑌;
𝑍 ⊗ 𝑋 𝑌𝑌 = 𝑋𝑍

𝜆$!* 𝜉',$!	 𝑋𝑍
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Proof Sketch – Learnable part

2. If 𝒢 𝑃# , 𝑃# have same pattern, there is 1q Clifford 𝐶 such that (𝐶 ∘ 𝒢) 𝑃# = 𝑃#

11 𝜆!"

CNOT 𝑋𝑍 = 𝑌𝑌;
𝑍 ⊗ 𝑋 𝑌𝑌 = 𝑋𝑍

Expectation value for depth 𝑡: 𝐹OV 𝑡 = 𝜆OVP 𝜉Q,OV	 𝜉R,OV	

SPAM noisegate noise

Fitting F 𝑡 	different 𝑡 gives SPAM-robust estimate for 𝜆$(
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Proof Sketch – Learnable part

3. Products on any cycle on pattern transform graph can be estimated via CB.
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CNOT 𝐼𝑍 = 𝑍𝑍;
CNOT 𝑍𝑍 = 𝐼𝑍.



Proof Sketch – Learnable part

3. Products on any cycle on pattern transform graph can be estimated via CB.
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Proof Sketch – Learnable part

3. Products on any cycle on pattern transform graph can be estimated via CB.
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Proof Sketch – Learnable part

3. Products on any cycle on pattern transform graph can be estimated via CB.
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Proof Sketch – Learnable part

3. Products on any cycle on pattern transform graph can be estimated via CB.
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Proof Sketch – Learnable part

3. Products on any cycle on pattern transform graph can be estimated via CB.

Expectation value for depth 2𝑡: 𝐹WW 2𝑡 = 𝜆VVP 𝜆NVP 𝜉Q,VV	 𝜉R,VV	

SPAM noisegate noise

Fitting F 𝑡 	different 𝑡 gives SPAM-robust estimate for 𝜆((𝜆#(
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Proof Sketch – Unlearnable part

1. We show any cut of pattern transform graph induces a valid gauge transform 
(s.t. Pauli noise model is preserved)

2. Using the fact that cycle space and cut space are orthogonal complement, we 
conclude only functions lies in the cycle space is learnable
 (moreover, they can be learned via “cycle” benchmarking)
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Note: SPAM noise 𝜉1/3 needs to 
be transformed correspondingly



More examples



Experiments with IBM – all learnable info

• Data taken from from ibmq_montreal on 2022-03-23



Experiments – Physical region
By physical constraints (quantum channel being CPTP), we can bound the unlearnable Pauli fidelities

Observation: Large ambiguity for unlearnable Pauli fidelities (error rates).

Am
biguity



Can we resolve unlearnability?

• Unlearnability roots from gauge 
freedom

• Unlearnability does not exist if the 
initial state is perfect
• No room for gauge transform

• We design protocols to learn all Pauli 
fidelities given perfect SP

Simulation



Experiments – perfect SP?

• Got unphysical results!

• This implies the assumptions of 
perfect SP is NOT practical

• Violation of physical constraints can 
be used to lower bound SP noise 
~	0.6%
• Could also come from other 

imperfectness of assumptions

unphysical!!



Summary & Outlook

• We study the issue of learnability for Pauli noise
• Main result: Mapping noise learnability to pattern transform graph
• Cycle benchmarking (with trick) learns all learnable information
• The issue of unlearnability is experimentally relevant

• Open questions
• Learnability-consistent quantum error mitigation
• Time/Sample complexity for learning (see e.g., [SC et al., Phys. Rev. A. 105, 032435])
• Combating unlearnability by going beyond qubits or circuit model



Thank you!
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