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Abstract
The recovery of an unknown density matrix of large size requires huge computational resources. State-of-the-art performance has recently been achieved
with the Factored Gradient Descent (FGD) algorithm and its variants since they are able to mitigate the dimensionality barrier by utilizing some of the
underlying structures of the density matrix. Despite the theoretical guarantee of a linear convergence rate, convergence in practical scenarios is still slow
because the contracting factor of the FGD algorithms depends on the condition number κ of the ground truth state. Consequently, the total number of
iterations needed to achieve the estimation error ε can be as large as O(

√
κ ln( 1

ε )). In this work, we derive a quantum state tomography scheme that
improves the dependence on κ to the logarithmic scale. Thus, our algorithm can achieve the approximation error ε in O(ln( 1

κε )) steps. The improvement
comes from the application of non-convex Riemannian gradient descent (RGD). The contracting factor in our approach is thus a universal constant
that is independent of the given state. Our theoretical results of extremely fast convergence and nearly optimal error bounds are corroborated by the
numerical results.

Preliminary
• For quantum systems, the density matrix ρ is mostly of low rank. Consider ρ be of rank r ≪ d.

Then ρ only has (2d − r)r d.o.f. We choose m basis elements {S1, S2, · · · , Sm} i.i.d. uniformly
at random from the Pauli basis set {W1, W2, · · · , Wd2}.

• Define a linear (sensing) map A : Hd(C) → Rm with its i-th component (A(X))i =√
d
m Tr(SiX), The corresponding adjoint operator A∗ : Rm → Hd(C) is A∗(y) =√
d
m

∑m
i=1 yiSi. Therefore, A∗A(X) = d

m

∑m
i=1 Tr(SiX)Si. The expectation is then

E[A∗A(X)] = 1
d

∑d2

i=1 Tr(WiX)Wi = X.

RGD Algorithm
The density matrix ρ ∈ Cd×d is min

X∈Cd×d
f(X) :=

1
2∥y − A(X)∥2

2 subject to rank(X) ≤ r

Algorithm 1 [1] K. Wei and J.-F. Cai and T.
F Chan and S. Leung (2016)

Input: A, y and rank r.
Initialize X0 and do the SVD X0 = U0Σ0V ∗

0 .
for k = 1, . . . do

1. find the direction Gk = A∗(y − A(Xk))
2. choose the step size αk = ∥PTk

(Gk)∥2
F

∥A(PTk
(Gk))∥2

2
.

3. find a matrix Wk = Xk + αkPTk
(Gk).

4. update the matrix Xk+1 = Hr(Wk)
end for
Output: ρ̂ = Xk when the stopping criteria is
met.

The tangent space Tk at the k-th step Xk is
determined by

Tk = {X ∈ Hd | (I − PUk
)X(I − PVk

) = 0},

The corresponding projection is PTk
: X 7→

PUk
X + XPVk

− PUk
XPVk

.

Main Result
The density matrix ρ is considered of rank r with singular values {σi}r

i=1 in decreasing order. Denote
condition number of ρ be κ := σ1/σr. The measured data is y = A(ρ) + z ∈ Rm, where the noise z
is supposed to obey ∥A∗(z)∥ ≤ λ.

Theorem 1. [2] There exist constants C1, C2 > 0 such that when provided λ ≤ C1σr/
√

r and
m ≥ C2κ2r2d log6 d, the k-th iterates of the RGD algorithm with initial point X0 = Hr(A∗(y)) has
rank at most r and is guaranteed to be close to the true ρ in Frobenius norm distance bounded as

∥Xk − ρ∥F ≤ ∥X0 − ρ∥F · γ̄k + 2
√

2rλ

1 − δ3r

(
1

1 − γ̄

)
, (1)

where γ̄ < 1 is a universal contracting bound and δ3r is the restricted isometry constant of A.

Corollary 1. [2] There exist positive constants C0, C1, C2 all being O(1) and C1 < C2 such that the
RGD algorithm can output the estimated density matrix ρ̂ close to ρ of rank r obeying ∥ρ̂−ρ∥F

∥ρ∥F
≤

C2
√

rλ
∥ρ∥F

, after 1
ln(1/γ̄)

(
ln

(
2C0∥ρ∥F

rκλ + 2
√

2
)

− ln(C2 − C1)
)

iteration steps, where γ̄ is a universal
constant smaller than 1.
When applied to the noiseless case, that is λ = 0, the RGD algorithm outputs ρ̂ with ∥ρ̂−ρ∥F

∥ρ∥F
≤ ε,

after ln
(

C0√
rκε

)
/ ln( 1

γ̄ ) iteration steps.

Numerical Setting and Result
• We use the open-source software Qiskit

and IBM quantum simulator.

• We compare with the Momentum-Inspired
Factored Gradient Decent (MiFGD):

min
A∈Cd×r

f(X) := 1
2∥y − A(AA∗)∥2

2

subject to ∥A∥2
F ≤ 1, where A ∈ Cd×r.

The hyperparameter momentum is µ ∈
{1/8, 1/4, 1/3, 1/2, 3/4} and the step size
is η = 0.01 as [3].

• For both the Hadamard(6) state and the
GHZ(6) state, we use m = 819 ≈ 0.2 × 46

Pauli measurements and l = 2400 shots.
For both the Hadamard(8) state and the
GHZ(8) state, we use m = 3276 ≈ 0.05 ×
48 Pauli measurements and l = 8600 shots.

• The four demonstrated RGD cases all have
convergence rates much faster than the
MIFGD method for all µ.
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The RGD algorithm is performed on the mea-
sured data (yM ) and the exact data (yE) sepa-
rately. The initial guess is either random X0 or
X0 = Hr(A†(y)). The compared MiFGD algo-
rithm is plotted in dots.

Conclusion
• The RGD approach is efficient in solv-

ing the quantum state tomography since
it searches for possible solutions over low
rank tangent space.

• In each iteration, the error is minimized
by a universal contracting factor γ̄ < 1.

• The RGD approach can achieve the final
result with nearly optimal error bound in
Frobenius norm. In the noiseless case, the
error can be arbitrarily small.

• Numerical simulations corroborate our re-
sults, and demonstrate that our approach
performs better than state-of-the-art non-
convex MIFGD approach.
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