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Abstract

The recovery of an unknown density matrix of large size requires huge computational resources. State-of-the-art performance has recently been achieved
with the Factored Gradient Descent (FGD) algorithm and its variants since they are able to mitigate the dimensionality barrier by utilizing some of the
underlying structures of the density matrix. Despite the theoretical guarantee of a linear convergence rate, convergence in practical scenarios is still slow
because the contracting factor of the FGD algorithms depends on the condition number x of the ground truth state. Consequently, the total number of
iterations needed to achieve the estimation error € can be as large as O(y/k1n(2)). In this work, we derive a quantum state tomography scheme that
improves the dependence on x to the logarithmic scale. Thus, our algorithm can achleve the approximation error € in O(ln( —)) steps. The improvement
comes from the application of non-convex Riemannian gradient descent (RGD). The contracting factor in our approach is thus a universal constant
that is independent of the given state. Our theoretical results of extremely fast convergence and nearly optimal error bounds are corroborated by the
numerical results.

RGD Algorithm

Cdxd ig

Preliminary

e For quantum systems, the density matrix p is mostly of low rank. Consider p be of rank r < d.
Then p only has (2d — r)r d.o.f. We choose m basis elements {57,599, -+, 5.} i.i.d. uniformly
at random from the Pauli basis set {W1, Wy, .-+, W2 }.
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1
§Hy — A(X)||3 subject to rank(X) < r

The density matrix p €

o Define a linear (sensing) map A : Hyz(C) — R™ with its i-th component (A(X));
\/iTr S;iX), The corresponding adjoint operator A* : R™ — Hy(C) is A*(y)
[ d ZZ 4;S;.  Therefore, A*A(X) = %221 Tr(S5;X)S;. The expectation is then
FAX)] = dzz | Tr (W X)Ws = X

Algorithm 1 [1] K. Wei and J.-F. Cai and T.
F Chan and S. Leung (2016)

Input: A,y and rank r.
Initialize XO and do the SVD X() — U()Z()VO*.
for k=1,... do

1. find the direction G}, = A*(y — A(Xk))

Main Result 2. choose the step size ap = HJK;;:%;Z%’HQ
The density matrix p is considered of rank r with singular values {o;}!_; in decreasing order. Denote 3. find a matrix Wiy, = X, + aPr, (Gg).
condition number of p be k := 01 /0,.. The measured data is y = A(p) + z € R™, where the noise z 4. update the matrix Xpi1 = H, (W)
is supposed to obey ||A*(2)|| < A. end for
Output: p = X when the stopping criteria is
Theorem 1. [2| There exist constants C7,Cs > 0 such that when provided A < Cyo,./y/r and met.

m > Cyk?r?dlog® d, the k-th iterates of the RGD algorithm with initial point Xo = H,(A*(y)) has

rank at most r and is guaranteed to be close to the true p in Frobenius norm distance bounded as
5 & The tangent space I at the k-th step X is

N2\ 1 determined by
X5 — < || Xy — AR , 1
= plle < 10 - ol 7 + 5> (25 ) )

Ty = {X e H, | (I—PUk)X(I—PVk) = O},

where ~v < 1 is a universal contracting bound and 0=z, is the restricted isometry constant of A. , . .
7 5 5T v The corresponding projection is Pr, : X +—

Corollary 1. [2] There exist positive constants Cy, C7, C5 all being O(1) and C7 < C5 such that the Py, X + X Py, — Py, X Py, .

RGD algorithm can output the estimated density matrix p close to p of rank r obeying HTI_IIIOLlF <

Cs H\gﬁ;, after ln(ll/’_y) (ln (chlﬂinF | 2\/5) — In(Csy — C’l)) iteration steps, where 7 is a universal Conclusion

constant smaller than 1. e The RGD approach is efficient in solv-
When applied to the noiseless case, that is A = 0, the RGD algorithm outputs p with ”’ﬁp”pﬂF < e, ing the quantum state tomography since
after In (\/_O ) /1n(2) iteration steps. it searches for possible solutions over low

rank tangent space.

e In each iteration, the error is minimized

Numerical Settmg and Result by a universal contracting factor v < 1.

e We use the open-source software Qiskit
and IBM quantum simulator.

Hadamard(6) Hadamard(8) .
ey o= ) | 12) etk oL e The RGD approach can achieve the final

iy T VoSN |l Ve o=l ATY)) result with nearly optimal error bound in
. —&— Yp (random Ao 1 LYV RN n

— yelandomXo) * Frobenius norm. In the noiseless case, the
AR error can be arbitrarily small.

e We compare with the Momentum-Inspired
Factored Gradient Decent (MiFGD):
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e Numerical simulations corroborate our re-
sults, and demonstrate that our approach

LT T T performs better than state-of-the-art non-

GHZ(6) GHZ(8) convex MIFGD approach.

: —o— yy Xo=HAAT(Y) | 1. —o— yy (Xo=HA(AT(y)))
;w e, —— Y (Xo = H(AT(y))) :’, — = yg (Xo =HA{AT(y)))
- "% —a— yu (random Xo) 1107 (*7:?5’??’5:{{~.~.~.;.~;:.,' —— yum (random Xj)

% -=—- yg (random Xo) | ---- yg (random Xp)

1
i X):==|ly — A(AA")||3
Jmin - f(X) = Slly — AAAT2

subject to [|A||% < 1, where A € C*",
The hyperparameter momentum is u €
{1/8,1/4,1/3,1/2,3/4} and the step size
is 7 = 0.01 as [3].
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The four demonstrated RGD cases all have

convergence rates much faster than the
MIFGD method for all




