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From Fisher metric to quantum
state manifolds

The space of probability distributions p(Λ) for Λ ∈
RD can be equipped with a Fisher information met-
ric. In quantum physics, we obtain probability distri-
butions by taking 〈Ai|ψ〉 for a wave function |ψ〉 and
eigenvector |Ai〉 of some observable Â. As a re-
sult, we get a Projective Hilbert space CP n equipped
with a Fubini-study metric [1]. Such a metric can
be defined between two states |ψ〉, |ϕ〉 ∈ CP n as
ds2FS := arccos | 〈ψ|ϕ〉 |. Approximating for close states,
we get a Provost-Vallee (PV) metric [2]

ds2PV = 1− | 〈ψ|ψ + δψ〉 |2. (1)

As opposed to the Hilbert space with Fubini-Study
metric, this creates a length space (the distance be-
tween any two points is not an infimum over all possi-
ble paths) only on a so-called State manifolds.

State manifolds

Consider a n−dimensional projective Hilbert space
CP n for n ∈ N ∪ {+∞}, and Hamiltonian Ĥ(Λ) with
driving parameters, denoted collectively as a vector
Λ ∈ RD. The spectrum is assumed to be bound and
non-degenerate, except for a finite number of points.
The Schrödinger equation then reads Ĥ|ψn(Λ)〉 =
En|ψn(Λ)〉.
The mapping Λ → |ψ0(Λ)〉 defines a ground state
manifold (or any excited manifold analogically)

M0 := ∪Λ∈RD|ψ0(Λ)〉 (2)

equipped with a Geometric tensor

Qµν := 〈ψ0,µ|(Id− |ψ0〉 〈ψ0|)|ψ0,ν〉, (3)

where comma denotes a partial derivative. A pullback
of a PV-metric in Eq. 1 is then gµν = ReQµν. In addition
we get a symplectic form χµν = ImQµν.
The physical meaning of this geometry is still not fully
understood. There are many special practical show-
cases, such as decohering driving [3], or quantum
search algorithms [4]. Other implications for quantum
state driving are still being discovered. Here we dis-
cuss its meaning in Quantum phase transitions.

Geometry of Quantum Phase
Transitions

Quantum phase transitions (QPT) describe the phe-
nomenon where the ground state (or its derivative) of a
parametrically driven Hamiltonian Ĥ(Λ) changes dis-
continuously with the parameter Λ.
From Eq. 1, we see that on QPT, the metric dis-
tance diverges. From ds2 = gµνdΛ

µdΛν, we see that
along QPT, the metric tensor needs to be discon-
tinuous. Because of the summation, the converse
does not hold. It is still unclear in which cases the
converse implication holds and in which cases the
discontinuities are reflected in the geometry of state
manifolds itself, i.e. in Ricci scalar R, or when it is
just a matter of a coordinate system. Schematically

QPT ⇔ ds2 is disc.⇒ gµν is disc. ?↔ R is disc.

Some studies [5], [6] show that for specific mod-
els R = const. and the ground state manifold it-
self is smooth, meaning the discontinuities are only
coordinate-ones. For other models, such as in [7], di-
vergences occur even in the Ricci scalar.
Another topic of interest concerns the geodesics. It
was shown that they do not cross the QPT [8]. The
demonstration of their behaviour is beyond the scope
of this poster, and will be presented in the article.

Fully connected multi-qubit model

We define the fully connected multi-qubit model (a spe-
cial parametrization of a Lipkin model) using two real
parameters Λ ≡ (λ;χ) with Hamiltonian

Ĥ(λ, χ) = Ĵ3 + λV̂1 + χV̂2 + χ2V̂3,

V̂1 := −
1

2j
Ĵ2
1 ,

V̂2 := −
1

2j

[
Ĵ1(Ĵ3 + jId) + (Ĵ3 + jId)Ĵ1

]
,

V̂3 := −
1

2j
(Ĵ3 + jId)2,

(4)

for the angular momentum operator Ĵ ≡ (Ĵ1, Ĵ2, Ĵ3)
T .

In further discussion, we use the maximal j = N/2.
The phase structure of this model is shown in Fig. 1.
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Fig. 1: Phase structure for a multi-qubit model.

The metric tensor elements for N = 5 are shown in
Fig. 2. With increasing N it converges to the classi-
cal limit displayed on the right. The QPT emerges from
two phenomena. First, for λ < 0, the number of diabolic
points (points of spectrum degeneracy) increases with
N . Abrupt changes in the ground state connect these
points, and for N →∞ they cover the whole separatrix
in this area. Second, different phenomena occur on the
χ axis, where the discontinuity is created as the "valley"
going along the axis sharpens, creating the discontinu-
ity in derivative at the classical limit. These two areas
are connected by a fast-changing ground state, leading
to a discontinuity in the classical limit along the whole
separatrix.
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Fig. 2: Metric tensor elements for N = 5 multi-qubit
model. From left arctan gλλ, arctan gλχ, arctan gχχ.

Lipkin model, Classical limit

As a classical limit, we calculated the Hartree-Bose
condensate. Generally, we search for the N−particle
condensate ground state (N̂ = t̂+t̂+ ŝ+ŝ) for two types
of bosons, by exciting bosonic vacuum |0〉 as

|ψHB(Λ)〉 = 1√
N !

[B̂+]N |0〉 , B̂+ :=
τ (Λ)t̂+ + ŝ+√
1 + |τ (Λ)|2

(5)

The ground state |ψHB〉 can be found by minimizing
the function ε(τ (Λ)) := 〈ψHB|ĤHB|ψHB〉 with respect
to τ . ĤHB is a Hartree-Bose hamiltonian derived from
Eq. 4. As a result, we get τ = Re τ = τ (λ, χ), shown
in Fig. 3. Discontinuities in this plot correspond to
QPTs. Metric tensor elements are then

gµν = N
(
τ 2,λ τ,λτ,χ
τ,λτ,χ τ 2,χ

)
(6)

for N := N/(1 + τ 2)2. The determinant of such
a metric is identically zero. The ground state man-
ifold metric tensor elements (see Fig. 4) are linear
with N . Except for QPTs, additional discontinuities
are being created along lines dτ/dλ = 0 at the clas-
sical limit. This supports the statement that along
QPT, components gµν must contain discontinuity, but
a discontinuity in the metric tensor component does
not necessarily imply the existence of QPT.
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Fig. 3: Value of τ (λ, χ) in Hartree-Bose condensate
of a multi-qubit model. Black, dashed lines

correspond to dτ/dλ = 0.
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Fig. 4: Metric tensor for a Hartree-Bose condensate
for N = 100. From left: arctan gλλ, arctan gλχ, arctan gχχ

Conclusions

We have shown that QPT leads to metric tensor
discontinuities, but the converse does not gener-
ally hold. This is supported by a specific numerical
model, for which we semi-analytically found the clas-
sical limit of the metric tensor. The emergence of
QPT from a finite-dimensional model was presented
and explained by two phenomena – the connection
of diabolic points and the "sharpening" of the wave
function parametric dependence.
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