Bipartite entanglement and its detection by local generalized measurements

Maximilian Schumacher and Gernot Albe
Institut für Angewande Physik, Technische Unversität Darmstadt, Hochschulstraße 4a, 64289 Darmstad

Motivation: Entanglement detection with local mea surements

Entanglement detection with local measurements can be performed over far distant distances

- Relevant for quantum key distribution and quantum communication
- Consider a bipartite system with dimensions d_{A} and d_{B} and observers Alice and Bob

Comparison of the success rate for different type of informationally complete measurements

- Local orthogonal hermitian operator basis (LOO)
- (N, M)-POVMs

Sufficient condition involving trace norms are examined for arbitrary states

Hermitian operator bases

- Basis of hermitian $d \times d$ matrices
- The set of hermitian operators $G=\left(G_{1}, \cdots, G_{d^{2}}\right)^{T}, G_{i}^{\dagger}=G_{i}$
- Orthogonal to the Hilbert-Schmidt scalar product $\operatorname{Tr}\left\{G_{i} G_{j}\right\}=\delta_{i j}$

A special basis is $\tilde{G}=\left(\tilde{G}_{1}=\mathbb{1}_{d} / \sqrt{d}, \tilde{G}_{2} \cdots, \tilde{G}_{d^{2}}\right)^{T}$ and $\operatorname{Tr}\left\{G_{i}\right\}=0$ for $i \in 2, \ldots, d^{2}$

(N, M)-POVMs

Definition [1]

- Consider a qudit of dimension d
- A tuple of $\Pi=\left\{\Pi_{1}, \ldots, \Pi_{N M}\right\}$ positive operators consisting of N POVMs with M results
- The completeness relation of a single POVM $\sum_{a=1}^{M} \Pi_{i(\alpha, a)}=\mathbb{1}_{d}$
- The (N, M)-POVMs fulfill for $\alpha \neq \beta$

$$
\begin{aligned}
& \operatorname{Tr}\left\{\Pi_{i(\alpha, a)}\right\}=\frac{d}{M}, \\
& \operatorname{Tr}\left\{\Pi_{i(\alpha, a,}\right) \\
&\left.\operatorname{Tr}\left\{\Pi_{i(\alpha, a, a}\right)\right\}\left.=x \Pi_{\beta, b, a^{\prime}}\right\}
\end{aligned}=\frac{d}{M^{2}}+\left(1-\delta_{a, a^{\prime}} \frac{d-M x}{M(M-1)},\right.
$$

- The parameter is limited by $d / M^{2}<x \leq \min \left(d^{2} / M^{2}, d / M\right)$
- Informationally complete for $(M-1) N+1=d^{2}$

Examples

- Mutually unbiased measurements $M=d$
- Mutually unbiased bases $M=d$ and $x=1$
- GSIC $M=d^{2}$
- SIC-POVM $M=d^{2}$ and $x=1 / d^{2}$

Properties [2, 3]

- Basis expansion $\Pi=G^{T} S$
- Transformation properties with $\Gamma=\frac{x M^{2}-d}{M(M-1)}$

$$
\left(S^{T} S\right)_{i(\alpha, \alpha), j\left(\alpha^{\prime}, \alpha^{\prime}\right)}=\Gamma \delta_{i, j}-\frac{\Gamma}{M} \delta_{\alpha, \alpha^{\prime}}+\frac{d}{M^{2}}
$$

Spectrum $\operatorname{Sp}\left(S^{T} S\right)=\left\{\Gamma^{(N(M-1))}, \frac{d N^{(1)}}{M}, 0^{(N-1)}\right\}$
The matrix $S S^{T}$ is diagonal with $\operatorname{Sp}\left(S^{T} S\right)=\left\{\Gamma^{(N(M-1))}, \frac{d N^{(1)}}{M}\right\}$

Acknowledgement

Funding by the Deutsche Forschungsgemeinschaft (DFG)- SFB 1119- 236615297 is acknowledged.

Entanglement detection with trace norms

Correlation matrices

Consider arbitrary sets of hermitian operators $\mathcal{A}=\left\{A_{i} ; i=1, \cdots, N_{A}\right\}$ and $\mathcal{B}=\left\{B_{j} ; j=1, \cdots, N_{B}\right\}$ of the local observes Alice and Bob

Definition of the correlation matrix

$$
(C(\mathcal{A}, \mathcal{B} \mid \varrho))_{i j}=\operatorname{Tr}\left\{A_{i} \otimes B_{j}\left(\varrho-\varrho^{A} \otimes \varrho^{B}\right)\right\}
$$

Separable states fulfill
$\|C(\mathcal{A}, \mathcal{B} \mid \varrho)\|_{1}^{2} \leq \Sigma_{A} \Sigma_{B}$
$\Sigma_{A}=\max _{\sigma^{A}} \sum_{i=1}^{N_{A}}\left(\operatorname{Tr}\left\{A_{i} \sigma^{A}\right\}\right)^{2}-\left(\operatorname{Tr}\left\{A_{i} \varrho^{A}\right\}\right)^{2}$,
$\Sigma_{B}=\max _{\sigma^{B}} \sum_{j=1}^{N_{B}}\left(\operatorname{Tr}\left\{B_{j} \sigma^{B}\right\}\right)^{2}-\left(\operatorname{Tr}\left\{B_{j} \varrho^{B}\right\}\right)^{2}$

LOOs $G^{i}=\left\{G_{1}, \ldots, G_{d_{i}^{2}}\right\}[4]$
$\| C\left(G^{A}, G^{B}\lfloor\varrho) \|_{1}^{2} \leq\left(1-\operatorname{Tr}\left\{\left(\varrho^{A}\right)^{2}\right\}\right)\left(1-\operatorname{Tr}\left\{\left(\varrho^{B}\right)^{2}\right\}\right)\right.$
For (N, M)-POVMs the scaling relation holds $\left\|\left(S^{A}\right)^{T} C\left(G^{A}, G^{B} \mid \varrho\right) S^{B}\right\|_{1}^{2}=\Gamma_{A} \Gamma_{B}\left\|C\left(G^{A}, G^{B} \mid \varrho\right)\right\|_{1}^{2}$

The entanglement detection with (N, M)-POVMs
$\left\|C\left(\Pi^{A}, \Pi^{B} \mid \varrho\right)\right\|_{1}^{2} \leq \Gamma_{A} \Gamma_{B}\left(1-\operatorname{Tr}\left\{\left(\varrho^{A}\right)^{2}\right\}\right)\left(1-\operatorname{Tr}\left\{\left(\varrho^{B}\right)^{2}\right\}\right)$
$\Longrightarrow(N, M)$-POVMs and LOOs are leading to the same inequalities for entanglement detection [2]

Joint probabilities [1]

- Definition of the joint probability matrix for two local $\left(N_{i}, M_{i}\right)$-POVMs

$$
\left.P\left(\Pi^{A}, \Pi^{B}\right) \mid \varrho\right)=\operatorname{Tr}\left\{\left(\Pi^{A}\right)^{T} \otimes \Pi^{B} \varrho\right\}
$$

Separable states fulfill

$$
\left\|P\left(\Pi^{A}, \Pi^{B} \mid \varrho\right)\right\|_{1}^{2} \leq\left(\Gamma_{A}\left(1-\frac{1}{d_{A}}\right)+\frac{N_{A}}{M_{A}}\right)\left(\Gamma_{B}\left(1-\frac{1}{d_{B}}\right)+\frac{N_{B}}{M_{B}}\right)
$$

Expansion into LOOs [2]
$\left\|P\left(\Pi^{A}, \Pi^{B} \mid \varrho\right)\right\|_{1}=\left\|\sqrt{\Lambda^{A}} P\left(\tilde{G}^{A}, \tilde{G}^{B} \varrho\right) \sqrt{\Lambda^{B}}\right\|_{1}$
with the diagonal matrices of dimension $d_{A} \times d_{A}$ and $d_{B} \times d_{B}$

$$
\begin{aligned}
\left(\Lambda^{A}\right)_{11} & =\gamma_{A}\left(d_{A}+1\right), \\
\left(\Lambda^{A}\right)_{\nu \nu} & =\Gamma_{A}=\gamma_{A} \frac{d_{A} \tilde{x}_{A}-1}{d_{A}-1}, \\
\left(\Lambda^{B}\right)_{11} & =\gamma_{B}\left(d_{B}+1\right) \\
\left(\Lambda^{B}\right)_{\mu \mu} & =\Gamma_{B}=\gamma_{B} \frac{d_{B} \tilde{x}_{B}-1}{d_{B}-1}
\end{aligned}
$$

To compare different types of (N, M)-POVMs the rescaled parameters are introduced

$$
\tilde{x}_{A}=\frac{x_{A} M_{A}^{2}}{d_{A}^{2}}, \quad \tilde{x}_{B}=\frac{x_{B} M_{B}^{2}}{d_{B}^{2}} .
$$

and the separable states fulfill

$$
\left\|\sqrt{\frac{\Lambda^{A}}{\gamma_{A}}} P\left(\tilde{G}^{A}, \tilde{G}^{B} \mid \varrho\right) \sqrt{\frac{\Lambda^{B}}{\gamma_{B}}}\right\|_{1} \leq \sqrt{1+\tilde{x}_{A}} \sqrt{1+\tilde{x}_{B}}
$$

\Longrightarrow Entanglement detection only depends on the rescaled parameters of the (N, M)-POVMs
\Longrightarrow MUBs and SICs are able to detect the same entangled states
\Longrightarrow Entanglement detection with correlation matrices can detected more entangled states than joint probabilities

References

[1] K. Siudzinska, Phys. Rev. A 105, 042209 (2022).
[2] M. Schumacher, G. Alber, arXiv preprint arXiv:2305.14226 (2023)
[3] M. Schumacher, G. Alber, arXiv preprint arXiv:2305.17985 (2023).
[4] O. Gittsovich and O. Gühne, Phys. Rev. A 81, 032333 (2010)
[5] A. Sauer, J. Z. Bernad, H. J. Moreno, and G. Alber, J. Phys. A: Math. Theor. 54, 495302 (2021)
[6] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

Hit and run Monte-Carlo method

Sufficient conditions for entanglement detection are tested on bipartite qudit systems of dimension $2 \leq d_{i} \leq 4$

A two qudit density matrix can be represent by

$$
\varrho=\frac{\mathbb{1}_{d_{A} d_{B}}}{d_{A} d_{B}}+\sum_{i=2}^{d_{A}^{2}} a_{i} \tilde{G}_{i}^{A} \otimes \tilde{G}_{1}^{B}+\sum_{j=2}^{d_{B}^{2}} b_{j} \tilde{G}_{1}^{A} \otimes \tilde{G}_{j}^{B}+\sum_{i=2}^{d_{A}^{2}} \sum_{j=2}^{d_{B}^{2}} t_{i j} \tilde{G}_{i}^{A} \otimes \tilde{G}_{j}^{B}
$$

The density matrices are subset of a real vector space of dimension
$d_{A}^{2} d_{B}^{2}-1$,
A random walk is performed in the real vector space, but only the points are contained which lead to a positive density matrix [5]

This method was able to generate 10^{8} states

Simulation result for qudit systems

- The Euclidean volume ratios R of the entangled states over all states are calculated and compared with entangled states detected py Peres Horodecki-condition (PPT) [6]

$\left(d_{A}, d_{B}\right)$	$R_{P P T}$	$R_{J P, S I C}$	$R_{\text {Cor,LOO }}$
$(2,2)$	0,75784	0,67060	0,68860
	$\pm 1,7(4)$	$\pm 2,2(4)$	$\pm 2,1(4)$
$(2,3)$	0,97303	0,39732	0,43553
	$\pm 75)$	$\pm 5,6(4)$	$\pm 5,5(4)$
$(2,4)$	0,998696	0,02710	0,04504
	$\pm 1,6(5)$	$\pm 2,7(4)$	$\pm 3,5(4)$
$(3,3)$	0,999895	0,75680	0,76364
	$\pm 4(6)$	$\pm 8,2(4)$	$\pm 8,1(4)$
$(3,4)$	1	0,3605	0,3795
	± 0	$\pm 1,8(3)$	$\pm 1,8(3)$
$(4,4)$	1	0,6378	0,6419
	± 0	$\pm 7,7(3)$	$\pm 7,7(3)$

The dependence of the volume ratios calculated with joint probabilities for the parameters x_{A} and x_{B}

Conclusion and Outlook

The symmetry of (N, M)-POVMs shows characteristic scaling properties for entanglement detection

Entanglement detection with joint probabilities only depends on the rescaled parameters \tilde{x}_{A} and \tilde{x}_{B} and is independent for correlation matrices
The scaling relation can be investigated for multipartite systems

