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Abstract: Efficient certification and quantification of high dimensional entanglement of composite systems are challenging both theoretically as well as experimentally. Here,
we demonstrate how to measure the linear entropy, negativity and the Schmidt number of bipartite systems from the visibility of Mach–Zehnder interferometer using single
copies of the quantum state. We also propose how to measure the mutual predictability experimentally from the intensity patterns of the interferometric set-up without having
to resort to local measurements of mutually unbiased bases. Furthermore, we show that the entanglement witness operator can be measured in a interference setup and the
phase shift is sensitive to the separable or entangled nature of the state.

Quantum properties from interferometric visibility

•
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Figure 1. The initial state |a〉, where a ∈ {0,1}, converts to 1√
2
(|0〉 + (−1)a|1〉) after the first beam beam-splitter. This

transformation is modeled using a Hadamard gate H. Then a phase-shifter φ is inserted in arm |0〉. After that, a
controlled-unitary operation U with interferometric arms as control qubit is applied on ρ. Finally, the second beam-splitter is
modeled as Hadamard gate. HereM is the measurement in the {|0〉, |1〉} basis.

Utot = (H⊗ I)(|0〉〈0| ⊗ I + |1〉〈1| ⊗U)

× (eiφ|0〉〈0| ⊗ I + |1〉〈1| ⊗ I)(H⊗ I), (1)

where I is the identity. Figure 1 summarizes the aforementioned scheme.
If we start with a state |0〉〈0| ⊗ ρ, then the above sequence of gates give rise to the following final state

ρf =
1

2
[|+〉〈+| ⊗UρU† + |−〉〈−| ⊗ ρ + e−iφ (|+〉〈−| ⊗Uρ)

+ eiφ
(
|−〉〈+| ⊗ ρU†)], (2)

where |+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). If we detect the intensity corresponding to the

interferometric arm |0〉 it results in

I = tr
(
(|0〉〈0| ⊗ I)ρf

)

=
1

4
[1+ |tr(Uρ)|cos(φ − arg[tr(Uρ)])], (3)

where tr(Uρ) = |tr(Uρ)|exp[iarg[tr(Uρ)]]. It is seen that the action of the controlled-unitary on ρ modifies
the visibility of the interference pattern by the factor V = |tr(Uρ)| and the phase is modified by the argument
of tr(Uρ), i.e. α = arg[tr(Uρ)] for an input state ρ undergoing unitary evolution [53]. Thus, we can infer the
quantity tr(Uρ) by measuring the change in the visibility and the phase shift. We will show that we can
choose the unitary U suitably, such that, from the quantity tr(Uρ), we can determine whether the state is
entangled and the amount of entanglement present in the bipartite system.

3. Results

As mentioned before, given a single copy of quantum state (or even its subsystem) as input of the
interferometer we will construct unitary operators U such that one infer (1) the amount of entanglement
contained in the state, or (2) whether the quantum state is entangled from the interferometric pattern. Given
a quantum state as input such unitary operators are prepared by an oracle. In particular, the following results
are proved

Estimating entanglement from
interferometer

Quantity of interest Relationship
Linear entropy(E(.)) E(|Ψ〉) = 1− d

2 (1−V) for pure states (8) and

Ec(ρAB) ! 1− d(1−V)
2 with Ec(ρAB) as

convex-roof extended linear entropy (13).

Negativity (N (.)) V = 1
d 2

(
8N + (d− 2)2

)
for pure states (20).

Schmidt number (SN(ρ)) 0 ! 1±V
2 ! SN(ρ)

d (16)

Detecting when a state is entangled
from interferometer

Mutual predictability (COA,OB) COA,OB = 1
2 (1±V)

Witness For entangled Werner state phase is shifted by
angle π (48)

3

• If we detect the intensity corresponding to the interferometric arm |0⟩ it results in

I = tr
(
(|0⟩⟨0| ⊗ I) ρf

)

= 1
4[1 + |tr(Uρ)| cos(ϕ − arg[tr(Uρ)])], (1)

where tr(Uρ) = |tr(Uρ)| exp[i arg[tr(Uρ)]]. It is seen that the action of the controlled-unitary on ρ
modifies the visibility of the interference pattern by the factor V = |tr(Uρ)| and the phase is modified by
the argument of tr(Uρ), i.e., α = arg[tr(Uρ)] for an input state ρ undergoing unitary evolution.

• Thus, we can infer the quantity tr(Uρ) by measuring the change in the visibility and the phase shift.
We will show that we can choose the unitary U suitably, such that, from the quantity tr(Uρ), we can
determine whether the state is entangled and the amount of entanglement present in the bipartite system.

Linear entropy with a single copy in Interferometer

• We show that a single copy of the input state (or even a subsystem of the input state) is sufficient to
measure the linear entropy using the notion of quantum oracle (a quantum process required to solve a
task).

• In particular, given single copy of |Ψ⟩AB an oracle implements the unitary U = (I − 2P ) , where
P = |Ψ⟩ ⟨Ψ|AB. We send one of the local subsystem ρA and another system which is prepared in a
maximally mixed state IB

d , where d = dim(HB). We then have

|tr(UρAB)| = 1 − 2
d
tr(ρ2

A).

• For a bipartite mixed state ρAB with decomposition {pi, |Ψi⟩}, the convex roof extended linear entropy
is defined as

Ec(ρAB) = min
{pi,|Ψi⟩}

(piE(|Ψi⟩)) , (2)

here E(|Ψi⟩) =
(
1 − tr

(
ρ2

Ai

))
is the linear entropy of |Ψi⟩, and ρAi = trB(|Ψi⟩⟨Ψi|).

• From the definition of convex roof extended linear entropy one can then obtain

Ec(ρAB) ≤ 1 − d(1 − V )
2 . (3)

Measuring Schmidt number with a single copy

• Let Schmidt rank of a pure state |Ψ⟩ is denoted as SR(|Ψ⟩). The Schmidt number of a mixed state is
defined as

SN(ρ) = min
{pi,|Ψi⟩},ρ=

∑
i pi|Ψi⟩⟨Ψi|

max
i

SR(|Ψi⟩) (4)

• Let us denote the set of all states with Schmidt number less than of equal to k as Sk i.e., Sk := {ρ :
SN(ρ) ≤ k}. For a state ρ ∈ Sk, we have the following

max|Ψ⟩∈SB
⟨Ψ| ρ |Ψ⟩ ≤ k

d
, (5)

SB is the set of maximally entangled states.
• Consider that a bipartite state ρAB and unknown Schmidt number k is used as input of the interferometric

setup. The oracle produces an unitary U∗ = I − 2 |Ψ∗⟩ ⟨Ψ∗|, where max|Ψ⟩∈SB
⟨Ψ| ρ |Ψ⟩ = ⟨Ψ∗| ρ |Ψ∗⟩,

for ρAB ∈ Sk. We then obtain
0 ≤ 1 ± V

2 ≤ k

d
. (6)
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Measuring Negativity of pure states from single copy

• For a pure bipartite state |Ψ⟩ =
∑d−1

j=0
√

λj |j⟩A |j⟩B, its negativity is given by

N (|Ψ⟩) = 1
2
∑

i ̸=j

√
λiλj, (7)

where λi’s are Schmidt coefficients.
• Consider an operator

X =
d−1∑

i,j=0;i ̸=j

|i⟩⟨j| =
∑

i<j

(|i⟩⟨j| + |j⟩⟨i|)︸ ︷︷ ︸
Gij

. (8)

• For d = 2 case, X is unitary and the visibility is given by V = | tr(UρAB)| = ⟨Ψ| XA⊗XB |Ψ⟩ = 2N (|Ψ⟩).
• For d > 2, we show that

V = | tr(ρABUAB)| = 1
d2

(
8N + (d − 2)2

)
, (9)

where UAB = UA ⊗ UB and UK = eiπ
dXK .

• For d > 2, we show that
V = | tr(ρABUAB)| = 1

d2

(
8N + (d − 2)2

)
, (10)

where UAB = UA ⊗ UB and UK = eiπ
dXK .

• Consider the following mixed state which is a mixture of maximally entangled state and a classical-classical
state

ρAB = x
∣∣Φ+〉〈Φ+∣∣ + (1 − x)

d

d−1∑

j=0
|j⟩⟨j| ⊗ |j⟩⟨j| . (11)

The entanglement of the above state is given by

N (ρAB) = x(d − 1)
2 . (12)

• It can be shown that the joint observable XA ⊗ XB , we have tr(XA ⊗ XBρAB) = 2N (ρAB)
d−1 . Therefore,

the entanglement of the mixed state can be determined from the interferometric setup.

Mutual Predictability from interferometric set-up

• For observables OA and OB for Hilbert space HA ⊗HB and the eigenvectors of OA and OB can be taken
as {|k⟩A} and {|l⟩B}, where l, k ∈ {0, 1, 2, 3, .......d − 1}. We can define mutual predictability as

COA,OB
=
∑

k

B ⟨k|A ⟨k| ρAB |k⟩A |k⟩B . (13)

• By considering m mutually unbiased observables for each subsystem as {OAi
}m

i=1 and {OBi
}m

i=1, one
obtains

m∑

i=1
COAi

,OBi
≤ 1 + m − 1

d
(14)

for separable states.
• Mutual predictability for a pair of observables COA.OB

can be determined an oracle producing the following
unitary

UOA,OB
=


I ⊗ I − 2

∑

k

|k⟩A ⟨k| ⊗ |k⟩B ⟨k|


 . (15)

We then have
COA,OB

= 1
2
(
1 ±

∣∣tr
(
ρABUOA,OB

)∣∣) . (16)

• Measuring visibility for m such unitaries we obtain

2
(

1 + (m − 1)
d

)
− m ≥

m∑

i=1
Vi ≥ m − 2

(
1 + (m − 1)

d

)
, (17)

for separable states. If m = 2, then for separable states, we have V1 + V2 ≤ 1
d.

Witnessing Entanglement of Werner state from Interferometric set-up

• The witness operator F =
∑

i,j |i⟩⟨j| ⊗ |j⟩⟨i| is an entanglement witness operator for Werner state
ρw = xQs + (1 − x)Qa, where Qs = 2

d(d+1) (IA ⊗ IB + FAB) and Qa = 2
d(d−1) (IA ⊗ IB − FAB) .

• FAB is also an unitary operator, we also have

tr(Uρw) =
{

2(2x − 1)eiπ when ρw is entangled
2(2x − 1) when ρw is separable.

(18)

For entangled Werner state (x < 1
2), the phase shifts from ϕ to ϕ + π.

Conclusion

• Here, we demonstrate how to measure the linear entropy, negativity and the Schmidt number of bipartite
systems from the visibility of Mach–Zehnder interferometer using single copies of the quantum state.

• We also propose how to measure the mutual predictability experimentally from the intensity patterns of
the interferometric set-up without having to resort to local measurements of mutually unbiased bases.

• Furthermore, we show that the entanglement witness operator can be measured in a interference setup
and the phase shift is sensitive to the separable or entangled nature of the state.


