

Quantum PRP/PRF Switching Lemma via Adversary Method

Towards Tight Bounds for 3-Collision

Ansis Rosmanis

Graduate School of Mathematics, Nagoya University

k-Collision problem

Given an oracle access to $f: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$,

$$x \longrightarrow O_f \longrightarrow f(x)$$

decide if there are k distinct x_1, x_2, \ldots, x_k such that $f(x_1) = f(x_2) = \ldots = f(x_k)$.

Query complexity

$$k = 2 : \Theta(n^{2/3}),$$

 $k = 3 : \Omega(n^{2/3}), O(n^{5/7}),$
 $k = 4 : \Omega(n^{11/16}), O(n^{11/15}).$

Importance

- New algorithmic techniques,
- New lower bound techniques,
- Cryptographic applications.

Quantum adversary method

For a decision problem P, one has to decide if $f \in Yes_P$ or $f \in No_P$.

$$f = (f(1), f(2), \dots, f(n))$$

 Γ – any non-zero $Yes_P \times No_P$ matrix.

For every input $x \in \{1, \dots, n\}$,

$$\Gamma_{f,g}^{(x)} := \begin{cases} \Gamma_{f,g} & \text{if } f(x) \neq g(x), \\ 0 & \text{if } f(x) = g(x). \end{cases}$$

Adversary bound

Bounded-error quantum query complexity

$$Q_{\epsilon}(\mathsf{P}) = \Omega\left(\|\Gamma\|/\max_{x}\|\Gamma^{(x)}\|\right).$$

Challenges

- 1. Choosing a good Γ ,
- 2. Evaluating the norms.

Hardest instances for 3-Collision

 No_{3C} : $im_{mult} f$ contains n/2 pairs;

 Yes_{3C} : im_{mult.} f contains n/2-2 pairs and a quadruple.

The structure makes constructing lower bounds for the k=3 case more difficult than for the k=2 case.

Assignment vectors

Assignment: partial function $\alpha \colon \{1, \dots, n\} \to \{1, \dots, n\}$.

Compatibility: f agrees with α if $\alpha(x) = f(x)$ for all $x \in \text{dom } \alpha$.

For every Yes-certificate α :

$$|w_{\alpha}\rangle \stackrel{unit}{:=} \sum_{\substack{f \in Yes \\ \alpha \subset f}} |f\rangle \quad \text{and} \quad |v_{\alpha}\rangle \stackrel{unit}{:=} \sum_{\substack{f \in No \\ \alpha \subset f}} |f\rangle.$$

We interpret the state of the adversary being in $|w_{\alpha}\rangle$ or $|v_{\alpha}\rangle$ as the algorithm having learnt that f agrees with α .

This is reminiscent of dual learning graphs.

Candidate adversary matrix

Inspired by lower bounds for dual adaptive learning graphs, I propose constructing the adversary matrix Γ as a linear combination of

$$L_{i,o} := \left(\sum_{\substack{\alpha \\ |\text{dom } \alpha| = i \\ |\text{im } \alpha| = o}} |w_{\alpha}\rangle\langle v_{\alpha}| \right) \Pi_{i,o}$$

where $\Pi_{i,o}$ is a certain projector related to the symmetries of the problem:

$$\Gamma := \sum_{i,o} (n^{5/7} - i - n^{1/7}(i - o)) L_{i,o}.$$