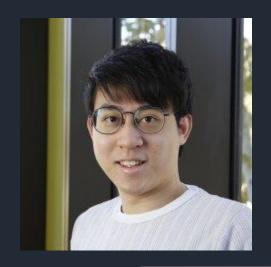
Out-of-distribution (OOD) generalization for learning quantum dynamics and dynamical simulation

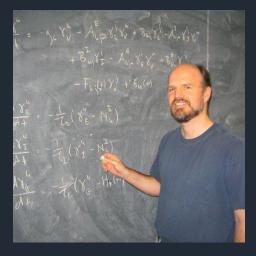
Matthias C. Caro

TQC 2023

Based on $\underline{arXiv:2204.10268}$ and $\underline{arXiv:2204.10269}$

My collaborators

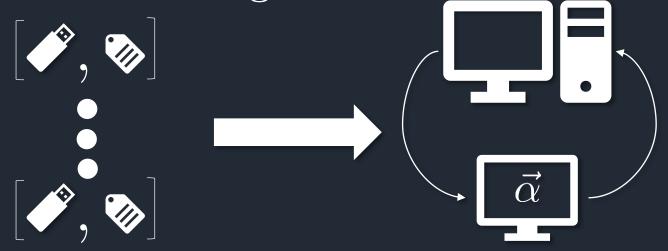


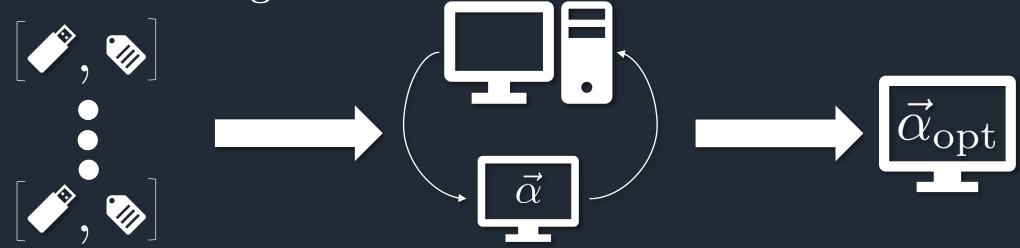


Matthias C. Caro, OOD generalization for learning quantum dynamics and dynamical simulation

Motivation

What this talk is about

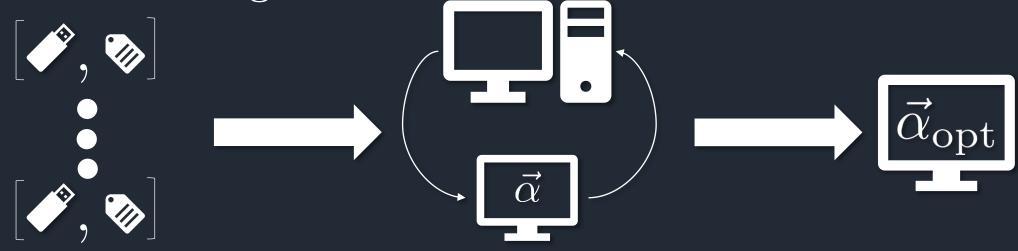




Phase 1: Training $\vec{\alpha} \rightarrow \vec{\alpha}$

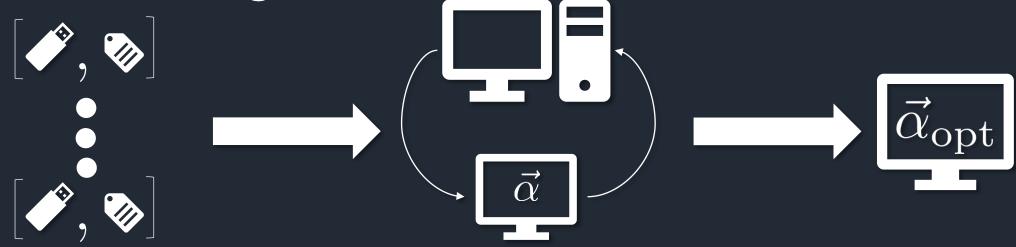
Phase 2: Testing on data from the same source

Phase 1: Training



Phase 2: Testing on data from the same source

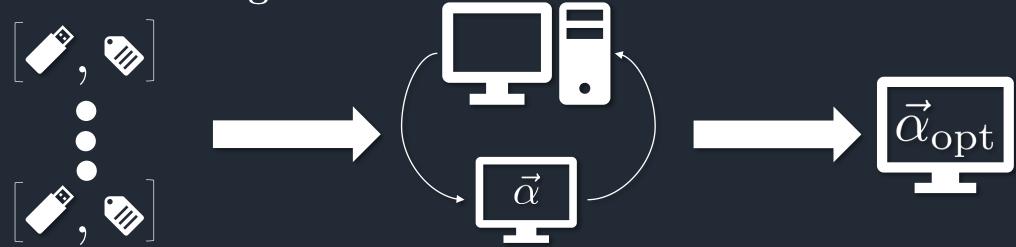
Phase 1: Training

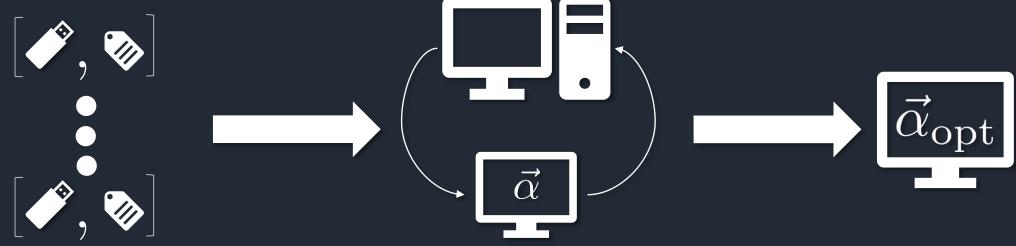


Phase 2: Testing on data from the same source

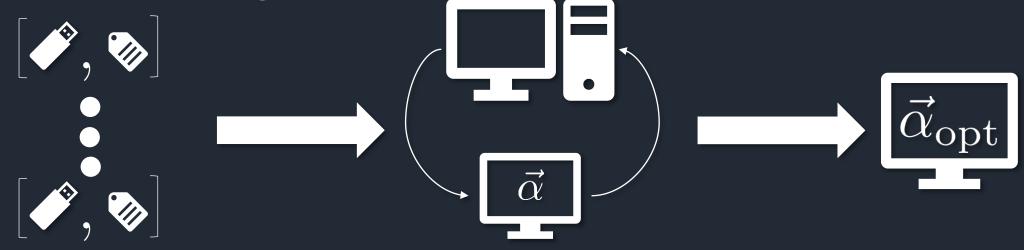
Phase 1: Training

Phase 2: Testing on data from the same source



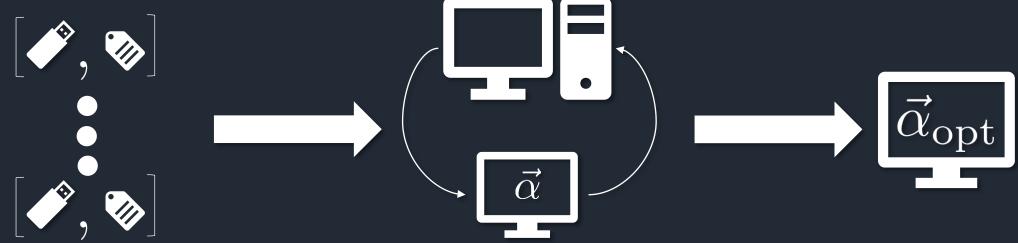


Phase 2: Testing on data from a different source



Phase 2: Testing on data from a different source

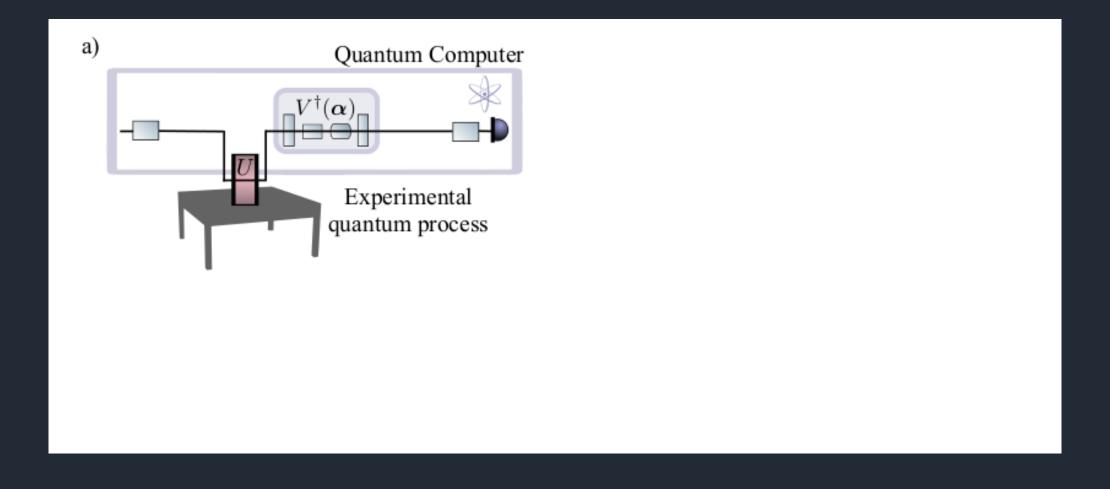
Phase 1: Training

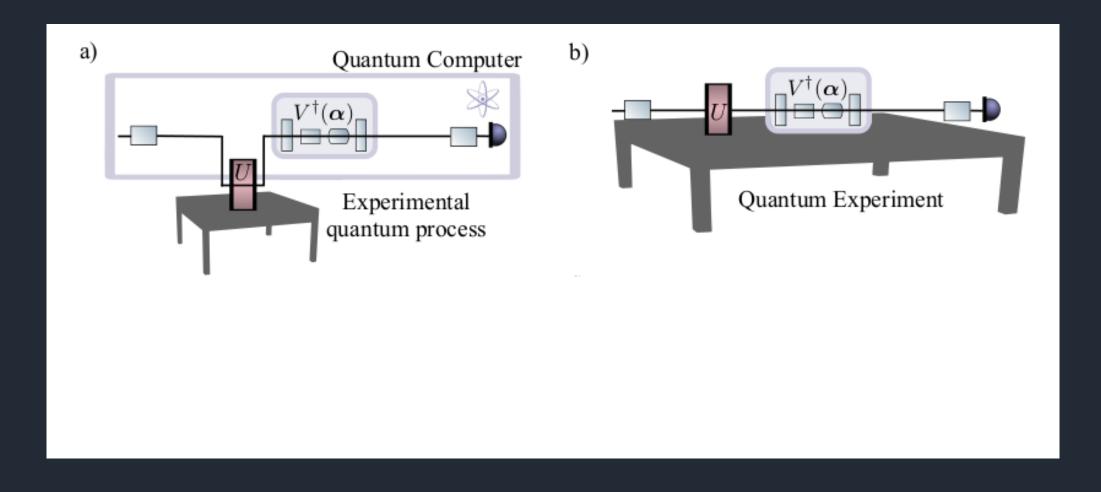


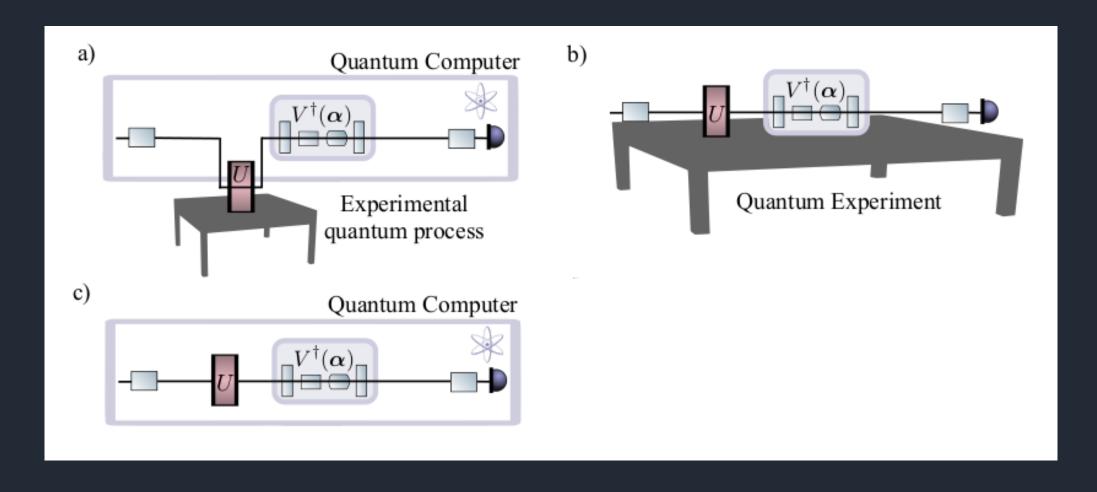
Phase 2: Testing on data from a different source

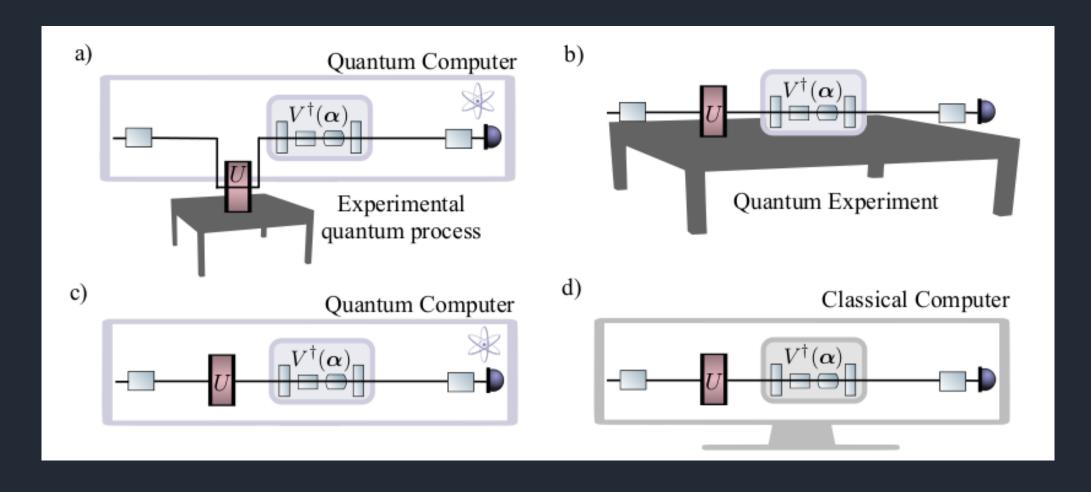
Phase 1: Training

Phase 2: Testing on data from a different source









Outline

Framework and Problem Setup

What learning problem we consider

TQC 2023

Matthias C. Caro, OOD generalization for learning quantum dynamics and dynamical simulation

Locally Scrambled Ensembles

What data sources we consider

2 2023 Matthias C. Caro, OOD generalization for learning quantum dynamics and dynamical simulation

Equivalence of Locally Scrambled Risks

How different locally scrambled risks are related

C 2023 Matthias C. Caro, OOD generalization for learning quantum dynamics and dynamical simulation

OOD Generalization for QNNs

What OOD generalization bounds we get for unitary learning with QNNs on locally scrambled ensembles $\,$

TQC 2023

Matthias C. Caro, OOD generalization for learning quantum dynamics and dynamical simulation

Applications and Numerics

How OOD generalization can be useful more concretely

TQC 2023 Matthiss C. Caro, OOD generalization for learning quantum dynamics and dynamical simulation

Conclusion and Outlook

What we talked about and what one could do next

OC 2023 Matthias C. Caro, OOD generalization for learning quantum dynamics and dynamical simulation

Framework and Problem Setup

What learning problem we consider

Goal: Learn an unknown $U \in \mathcal{U}\left(\left(\mathbb{C}^2\right)^{\otimes n}\right)$.

Goal: Learn an unknown $U \in \mathcal{U}\left(\left(\mathbb{C}^2\right)^{\otimes n}\right)$.

Ansatz: Unitary QNN $V(\vec{\alpha})$ with trainable classical param. $\vec{\alpha}$

Goal: Learn an unknown $U \in \mathcal{U}\left(\left(\mathbb{C}^2\right)^{\otimes n}\right)$.

Ansatz: Unitary QNN $V(\vec{\alpha})$ with trainable classical param. $\vec{\alpha}$

Strategy: Use quantum computer to evaluate whether a param.

setting $\vec{\alpha}$ is good on available data and in which

direction you can improve.

Goal: Learn an unknown $U \in \mathcal{U}\left(\left(\mathbb{C}^2\right)^{\otimes n}\right)$.

Ansatz: Unitary QNN $V(\vec{\alpha})$ with trainable classical param. $\vec{\alpha}$

Strategy: Use quantum computer to evaluate whether a param.

setting $\vec{\alpha}$ is good on available data and in which

direction you can improve.

Use classical computer for the actual optimization of the parameters, obtaining $\vec{\alpha}_{opt}$.

Definition (Expected Testing Risk):

Definition (Expected Testing Risk):

If U is the unknown unitary to be learned, the expected testing risk of the parameter setting $\vec{\alpha}$ of a QNN $V(\vec{\alpha})$ w.r.t. the testing ensemble \mathcal{P} is:

Definition (Expected Testing Risk):

If U is the unknown unitary to be learned, the expected testing risk of the parameter setting $\vec{\alpha}$ of a QNN $V(\vec{\alpha})$ w.r.t. the testing ensemble \mathcal{P} is:

$$R_{\mathcal{P}}(\vec{\alpha}) = \frac{1}{4} \mathbb{E}_{|\Psi\rangle \sim \mathcal{P}} \left[\left\| U |\Psi\rangle \langle \Psi | U^{\dagger} - V(\vec{\alpha}) |\Psi\rangle \langle \Psi | V(\vec{\alpha})^{\dagger} \right\|_{1}^{2} \right].$$

Definition (Expected Testing Risk):

If U is the unknown unitary to be learned, the expected testing risk of the parameter setting $\vec{\alpha}$ of a QNN $V(\vec{\alpha})$ w.r.t. the testing ensemble \mathcal{P} is:

$$R_{\mathcal{P}}(\vec{\alpha}) = \frac{1}{4} \mathbb{E}_{|\Psi\rangle \sim \mathcal{P}} \left[\left\| U |\Psi\rangle \langle \Psi | U^{\dagger} - V(\vec{\alpha}) |\Psi\rangle \langle \Psi | V(\vec{\alpha})^{\dagger} \right\|_{1}^{2} \right].$$

Goal: small $R_{\mathcal{P}}(\vec{\alpha}_{opt})$

Definition (Expected Testing Risk):

If U is the unknown unitary to be learned, the expected testing risk of the parameter setting $\vec{\alpha}$ of a QNN $V(\vec{\alpha})$ w.r.t. the testing ensemble \mathcal{P} is:

$$R_{\mathcal{P}}(\vec{\alpha}) = \frac{1}{4} \mathbb{E}_{|\Psi\rangle \sim \mathcal{P}} \left[\left\| U |\Psi\rangle \langle \Psi | U^{\dagger} - V(\vec{\alpha}) |\Psi\rangle \langle \Psi | V(\vec{\alpha})^{\dagger} \right\|_{1}^{2} \right].$$

Goal: small $R_{\mathcal{P}}(\vec{\alpha}_{opt})$

But: As learner, we know neither U nor \mathcal{P} ...

Definition (Training Cost):

Definition (Training Cost):

Given training data $\mathcal{D}_{\mathcal{Q}}(N) = \{|\Psi^{(j)}\rangle, U|\Psi^{(j)}\rangle\}_{j=1}^{N}$, where each $|\Psi^{(j)}\rangle$ is drawn i.i.d. from the *training ensemble* \mathcal{Q} , the *training cost* of the parameter setting $\vec{\alpha}$ of a QNN $V(\vec{\alpha})$ is:

Definition (Training Cost):

Given training data $\mathcal{D}_{\mathcal{Q}}(N) = \{|\Psi^{(j)}\rangle, U|\Psi^{(j)}\rangle\}_{j=1}^{N}$, where each $|\Psi^{(j)}\rangle$ is drawn i.i.d. from the training ensemble \mathcal{Q} , the training cost of the parameter setting $\vec{\alpha}$ of a QNN $V(\vec{\alpha})$ is:

$$C_{\mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}) = \frac{1}{4N} \sum_{j=1}^{N} \left\| U | \Psi^{(j)} \rangle \langle \Psi^{(j)} | U^{\dagger} - V(\vec{\alpha}) | \Psi^{(j)} \rangle \langle \Psi^{(j)} | V(\vec{\alpha})^{\dagger} \right\|_{1}^{2}.$$

Definition (Training Cost):

Given training data $\mathcal{D}_{\mathcal{Q}}(N) = \{|\Psi^{(j)}\rangle, U|\Psi^{(j)}\rangle\}_{j=1}^{N}$, where each $|\Psi^{(j)}\rangle$ is drawn i.i.d. from the *training ensemble* \mathcal{Q} , the *training cost* of the parameter setting $\vec{\alpha}$ of a QNN $V(\vec{\alpha})$ is:

$$C_{\mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}) = \frac{1}{4N} \sum_{j=1}^{N} \left\| U | \Psi^{(j)} \rangle \langle \Psi^{(j)} | U^{\dagger} - V(\vec{\alpha}) | \Psi^{(j)} \rangle \langle \Psi^{(j)} | V(\vec{\alpha})^{\dagger} \right\|_{1}^{2}.$$

Idea: Small $C_{\mathcal{D}_O(N)}(\vec{\alpha})$ as proxy for small $R_{\mathcal{P}}(\vec{\alpha})$

Definition (Training Cost):

Given training data $\mathcal{D}_{\mathcal{Q}}(N) = \{|\Psi^{(j)}\rangle, U|\Psi^{(j)}\rangle\}_{j=1}^{N}$, where each $|\Psi^{(j)}\rangle$ is drawn i.i.d. from the *training ensemble* \mathcal{Q} , the *training cost* of the parameter setting $\vec{\alpha}$ of a QNN $V(\vec{\alpha})$ is:

$$C_{\mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}) = \frac{1}{4N} \sum_{j=1}^{N} \left\| U | \Psi^{(j)} \rangle \langle \Psi^{(j)} | U^{\dagger} - V(\vec{\alpha}) | \Psi^{(j)} \rangle \langle \Psi^{(j)} | V(\vec{\alpha})^{\dagger} \right\|_{1}^{2}.$$

Idea: Small $C_{\mathcal{D}_O(N)}(\vec{\alpha})$ as proxy for small $R_{\mathcal{P}}(\vec{\alpha})$

But: When is it indeed a good proxy?

Idea: Small $C_{\mathcal{D}_O(N)}(\vec{\alpha})$ as proxy for small $R_{\mathcal{P}}(\vec{\alpha})$

But: When is it indeed a good proxy?

Idea: Small $C_{\mathcal{D}_{\mathcal{O}}(N)}(\vec{\alpha})$ as proxy for small $R_{\mathcal{P}}(\vec{\alpha})$

But: When is it indeed a good proxy?

Question of Generalization:

Idea: Small $C_{\mathcal{D}_O(N)}(\vec{\alpha})$ as proxy for small $R_{\mathcal{P}}(\vec{\alpha})$

But: When is it indeed a good proxy?

Question of Generalization:

When can we guarantee "small $C_{\mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}_{opt}) \Rightarrow \text{small } R_{\mathcal{P}}(\vec{\alpha}_{opt})$ "?

Idea: Small $C_{\mathcal{D}_O(N)}(\vec{\alpha})$ as proxy for small $R_{\mathcal{P}}(\vec{\alpha})$

But: When is it indeed a good proxy?

Question of Generalization:

When can we guarantee "small $C_{\mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}_{opt}) \Rightarrow \text{small } R_{\mathcal{P}}(\vec{\alpha}_{opt})$ "?

Two variants of the question:

Idea: Small $C_{\mathcal{D}_O(N)}(\vec{\alpha})$ as proxy for small $R_{\mathcal{P}}(\vec{\alpha})$

But: When is it indeed a good proxy?

Question of Generalization:

When can we guarantee "small $C_{\mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}_{opt}) \Rightarrow \text{small } R_{\mathcal{P}}(\vec{\alpha}_{opt})$ "?

Two variants of the question:

• $\mathcal{P} = \mathcal{Q}$: In-distribution (ID) generalization

Idea: Small $C_{\mathcal{D}_O(N)}(\vec{\alpha})$ as proxy for small $R_{\mathcal{P}}(\vec{\alpha})$

But: When is it indeed a good proxy?

Question of Generalization:

When can we guarantee "small $C_{\mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}_{opt}) \Rightarrow \text{small } R_{\mathcal{P}}(\vec{\alpha}_{opt})$ "?

Two variants of the question:

- $\mathcal{P} = \mathcal{Q}$: In-distribution (ID) generalization
- $\mathcal{P} \neq \mathcal{Q}$: Out-of-distribution (OOD) generalization

What data sources we consider

Question: What should \mathcal{Q} and \mathcal{P} have in common for OOD generalization from \mathcal{Q} to \mathcal{P} to be possible?

Question: What should \mathcal{Q} and \mathcal{P} have in common for OOD generalization from \mathcal{Q} to \mathcal{P} to be possible?

Definition (Locally Scrambled Ensembles [1, 2]):

^[1] W.-T. Kuo, A.A. Akhtar, D.P. Arovas, and Y.-Z. You; *Phys. Rev. B* 101, 224202 (2020)

^[2] H.-Y. Hu, S. Choi, and Y.-Z. You; *Phys. Rev. Research* 5, 023027 (2023)

Question: What should \mathcal{Q} and \mathcal{P} have in common for OOD generalization from \mathcal{Q} to \mathcal{P} to be possible?

Definition (Locally Scrambled Ensembles [1, 2]):

• $\mathcal{U}_{LS} \in \mathbb{U}_{LS} : \Leftrightarrow \mathcal{U}_{LS}(\bigotimes_{i=1}^n U_i) = \mathcal{U}_{LS} \text{ for all } U_i \in \mathcal{U}(\mathbb{C}^2).$

^[1] W.-T. Kuo, A.A. Akhtar, D.P. Arovas, and Y.-Z. You; *Phys. Rev. B* 101, 224202 (2020)

^[2] H.-Y. Hu, S. Choi, and Y.-Z. You; *Phys. Rev. Research* 5, 023027 (2023)

Question: What should \mathcal{Q} and \mathcal{P} have in common for OOD generalization from \mathcal{Q} to \mathcal{P} to be possible?

Definition (Locally Scrambled Ensembles [1, 2]):

- $\mathcal{U}_{LS} \in \mathbb{U}_{LS} : \Leftrightarrow \mathcal{U}_{LS}(\bigotimes_{i=1}^n U_i) = \mathcal{U}_{LS} \text{ for all } U_i \in \mathcal{U}(\mathbb{C}^2).$
- $S_{LS} \in \mathbb{S}_{LS} : \Leftrightarrow S_{LS} = \mathcal{U}_{LS} |0\rangle^{\otimes n}$ for some $\mathcal{U}_{LS} \in \mathbb{U}_{LS}$.

^[1] W.-T. Kuo, A.A. Akhtar, D.P. Arovas, and Y.-Z. You; *Phys. Rev. B* 101, 224202 (2020)

^[2] H.-Y. Hu, S. Choi, and Y.-Z. You; *Phys. Rev. Research* 5, 023027 (2023)

Question: What should \mathcal{Q} and \mathcal{P} have in common for OOD generalization from \mathcal{Q} to \mathcal{P} to be possible?

Definition (Locally Scrambled Ensembles [1, 2]):

- $\mathcal{U}_{LS} \in \mathbb{U}_{LS} :\Leftrightarrow \mathcal{U}_{LS}(\bigotimes_{i=1}^n U_i) = \mathcal{U}_{LS} \text{ for all } U_i \in \mathcal{U}(\mathbb{C}^2).$
- $S_{LS} \in \mathbb{S}_{LS} :\Leftrightarrow S_{LS} = \mathcal{U}_{LS} |0\rangle^{\otimes n}$ for some $\mathcal{U}_{LS} \in \mathbb{U}_{LS}$.

Intuition: Locally scrambled ensembles of unitaries/states

^[1] W.-T. Kuo, A.A. Akhtar, D.P. Arovas, and Y.-Z. You; *Phys. Rev. B* 101, 224202 (2020)

^[2] H.-Y. Hu, S. Choi, and Y.-Z. You; *Phys. Rev. Research* 5, 023027 (2023)

Question: What should \mathcal{Q} and \mathcal{P} have in common for OOD generalization from \mathcal{Q} to \mathcal{P} to be possible?

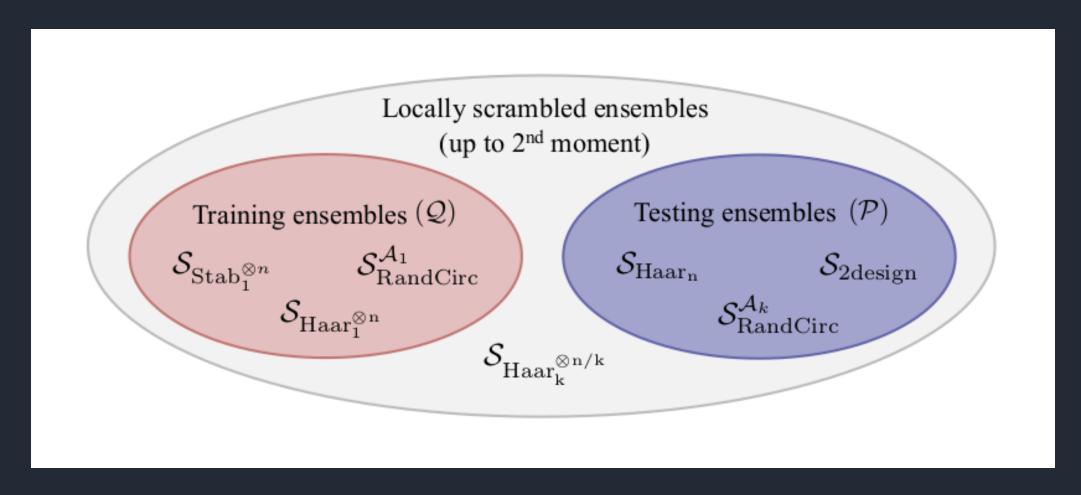
Definition (Locally Scrambled Ensembles [1, 2]):

- $\mathcal{U}_{LS} \in \mathbb{U}_{LS} :\Leftrightarrow \mathcal{U}_{LS}(\bigotimes_{i=1}^n U_i) = \mathcal{U}_{LS} \text{ for all } U_i \in \mathcal{U}(\mathbb{C}^2).$
- $S_{LS} \in \mathbb{S}_{LS} : \Leftrightarrow S_{LS} = \mathcal{U}_{LS} |0\rangle^{\otimes n}$ for some $\mathcal{U}_{LS} \in \mathbb{U}_{LS}$.

[1] W.-T. Kuo, A.A. Akhtar, D.P. Arovas, and Y.-Z. You; *Phys. Rev. B* 101, 224202 (2020)

[2] H.-Y. Hu, S. Choi, and Y.-Z. You; *Phys. Rev. Research* 5, 023027 (2023)

Locally Scrambled Ensembles – Training and Testing



Equivalence of Locally Scrambled Risks

How different locally scrambled risks are related

Equivalence of locally scrambled risks in unitary learning

Equivalence of locally scrambled risks in unitary learning

Theorem (Equivalence of locally scrambled ensembles for comparing unitaries [3]):

Let $\mathcal{P} \in \mathbb{S}_{LS}^{(2)}$ and $\mathcal{Q} \in \mathbb{S}_{LS}^{(2)}$, then for any parameter setting $\vec{\alpha}$,

$$\frac{1}{2}R_{\mathcal{Q}}\left(\vec{\alpha}\right) \le R_{\mathcal{P}}\left(\vec{\alpha}\right) \le 2R_{\mathcal{Q}}\left(\vec{\alpha}\right).$$

Equivalence of locally scrambled risks in unitary learning

Theorem (Equivalence of locally scrambled ensembles for comparing unitaries [3]):

Let $\mathcal{P} \in \mathbb{S}_{LS}^{(2)}$ and $\mathcal{Q} \in \mathbb{S}_{LS}^{(2)}$, then for any parameter setting $\vec{\alpha}$,

$$\frac{1}{2}R_{\mathcal{Q}}\left(\vec{\alpha}\right) \le R_{\mathcal{P}}\left(\vec{\alpha}\right) \le 2R_{\mathcal{Q}}\left(\vec{\alpha}\right).$$

In words:

Any two locally scrambled risks differ by at most a constant factor.

[3] M.C.C., H.-Y. Huang, N. Ezzell, J. Gibbs, A.T. Sornborger, L. Cincio, P.J. Coles, Z. Holmes; <u>arXiv:2204.10268 (2022)</u>

Do we have time for a proof sketch?

Do we have time for a proof sketch?

Our main technical result:

Our main technical result:

Any locally scrambled risk is equivalent to the risk induced by the n-qubit Haar measure:

Our main technical result:

Any locally scrambled risk is equivalent to the risk induced by the n-qubit Haar measure:

Lemma:

For any $Q \in \mathbb{S}_{LS}^{(2)}$ and any parameter setting $\vec{\alpha}$,

$$\frac{1}{2} R_{\mathcal{S}_{\text{Haar}_n}}(\vec{\alpha}) \le \frac{2^n}{2^n + 1} R_{\mathcal{Q}}(\vec{\alpha}) \le R_{\mathcal{S}_{\text{Haar}_n}}(\vec{\alpha}).$$

Proof of
$$\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$$
:

Proof of
$$\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$$
:

• n-qubit Haar risk vs squared Hilbert-Schmidt inner product:

Proof of
$$\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$$
:

• n-qubit Haar risk vs squared Hilbert-Schmidt inner product:

$$R_{\mathcal{S}_{\text{Haar}_n}}(\vec{\alpha}) = \frac{2^n}{2^n + 1} \left(1 - \frac{1}{4^n} |\operatorname{tr}[U^{\dagger}V(\vec{\alpha})]|^2 \right)$$

Proof of
$$\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$$
:

• n-qubit Haar risk vs squared Hilbert-Schmidt inner product:

$$R_{\mathcal{S}_{\text{Haar}_n}}(\vec{\alpha}) = \frac{2^n}{2^n + 1} \left(1 - \frac{1}{4^n} |\operatorname{tr}[U^{\dagger}V(\vec{\alpha})]|^2 \right)$$

• Insert an arbitrary $\tilde{U} \in \mathcal{U}(\mathbb{C})^{2^n}$ (thought of as from ensemble):

Proof of
$$\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$$
:

• n-qubit Haar risk vs squared Hilbert-Schmidt inner product:

$$R_{\mathcal{S}_{\text{Haar}_n}}(\vec{\alpha}) = \frac{2^n}{2^n + 1} \left(1 - \frac{1}{4^n} |\operatorname{tr}[U^{\dagger}V(\vec{\alpha})]|^2 \right)$$

• Insert an arbitrary $\tilde{U} \in \mathcal{U}(\mathbb{C})^{2^n}$ (thought of as from ensemble):

$$1 - \frac{1}{4^n} |\operatorname{tr}[U^{\dagger}V(\vec{\alpha})]|^2 = 1 - \frac{1}{4^n} |\operatorname{tr}[(\tilde{U}^{\dagger}U\tilde{U})^{\dagger}(\tilde{U}V(\vec{\alpha})\tilde{U}^{\dagger})]|^2$$

Proof of
$$\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$$
:

• n-qubit Haar risk vs squared Hilbert-Schmidt inner product:

$$R_{\mathcal{S}_{\text{Haar}_n}}(\vec{\alpha}) = \frac{2^n}{2^n + 1} \left(1 - \frac{1}{4^n} |\operatorname{tr}[U^{\dagger}V(\vec{\alpha})]|^2 \right)$$

- Insert an arbitrary $\tilde{U} \in \mathcal{U}(\mathbb{C})^{2^n}$ (thought of as from ensemble): $1 \frac{1}{4^n} |\operatorname{tr}[U^{\dagger}V(\vec{\alpha})]|^2 = 1 \frac{1}{4^n} |\operatorname{tr}[(\tilde{U}^{\dagger}U\tilde{U})^{\dagger}(\tilde{U}V(\vec{\alpha})\tilde{U}^{\dagger})]|^2$
- Squared Hilbert-Schmidt inner product as a Pauli average:

Proof of
$$\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$$
:

• n-qubit Haar risk vs squared Hilbert-Schmidt inner product:

$$R_{\mathcal{S}_{\text{Haar}_n}}(\vec{\alpha}) = \frac{2^n}{2^n + 1} \left(1 - \frac{1}{4^n} |\operatorname{tr}[U^{\dagger}V(\vec{\alpha})]|^2 \right)$$

- Insert an arbitrary $\tilde{U} \in \mathcal{U}(\mathbb{C})^{2^n}$ (thought of as from ensemble): $1 \frac{1}{4^n} |\operatorname{tr}[U^{\dagger}V(\vec{\alpha})]|^2 = 1 \frac{1}{4^n} |\operatorname{tr}[(\tilde{U}^{\dagger}U\tilde{U})^{\dagger}(\tilde{U}V(\vec{\alpha})\tilde{U}^{\dagger})]|^2$
- Squared Hilbert-Schmidt inner product as a Pauli average: $|\operatorname{tr}[A^{\dagger}B]|^2 = \frac{1}{2^n} \sum_{P \in \{1,X,Y,Z\} \otimes n} \operatorname{tr}\left[PA^{\dagger}BPB^{\dagger}A\right]$

Proof of
$$\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$$
 continued:

Proof of $\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$ continued:

• Writing $W = U^{\dagger}V(\vec{\alpha})$ and spectral expansion of P give

Proof of
$$\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$$
 continued:

• Writing $W = U^{\dagger}V(\vec{\alpha})$ and spectral expansion of P give

$$1 - \frac{1}{4^{n}} |\operatorname{tr}[(\tilde{U}^{\dagger}U\tilde{U})^{\dagger}(\tilde{U}V(\vec{\alpha})\tilde{U}^{\dagger})]|^{2}$$

$$= \mathbb{E}_{|s\rangle \sim \{|0\rangle, |1\rangle, |+\rangle, |-\rangle, |y+\rangle, |y-\rangle\} \otimes n} \mathbb{E}_{P \sim \{1, X, Y, Z\} \otimes n : \langle s|P|s\rangle \neq 0} \left[1 - \langle s|P|s\rangle \cdot \langle s|\tilde{U}^{\dagger}W^{\dagger}\tilde{U}P\tilde{U}^{\dagger}W\tilde{U}|s\rangle \right]$$

Proof of
$$\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$$
 continued:

• Writing $W = U^{\dagger}V(\vec{\alpha})$ and spectral expansion of P give

$$1 - \frac{1}{4^{n}} |\operatorname{tr}[(\tilde{U}^{\dagger}U\tilde{U})^{\dagger}(\tilde{U}V(\vec{\alpha})\tilde{U}^{\dagger})]|^{2}$$

$$= \mathbb{E}_{|s\rangle \sim \{|0\rangle, |1\rangle, |+\rangle, |-\rangle, |y+\rangle, |y-\rangle\} \otimes n} \mathbb{E}_{P \sim \{1, X, Y, Z\} \otimes n : \langle s|P|s\rangle \neq 0} \left[1 - \langle s|P|s\rangle \cdot \langle s|\tilde{U}^{\dagger}W^{\dagger}\tilde{U}P\tilde{U}^{\dagger}W\tilde{U}|s\rangle \right]$$

• Bounding the expression inside the expectation:

Proof of
$$\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$$
 continued:

• Writing $W = U^{\dagger}V(\vec{\alpha})$ and spectral expansion of P give

$$1 - \frac{1}{4^{n}} |\operatorname{tr}[(\tilde{U}^{\dagger}U\tilde{U})^{\dagger}(\tilde{U}V(\vec{\alpha})\tilde{U}^{\dagger})]|^{2}$$

$$= \mathbb{E}_{|s\rangle \sim \{|0\rangle, |1\rangle, |+\rangle, |-\rangle, |y+\rangle, |y-\rangle\} \otimes n} \mathbb{E}_{P \sim \{1, X, Y, Z\} \otimes n : \langle s|P|s\rangle \neq 0} \left[1 - \langle s|P|s\rangle \cdot \langle s|\tilde{U}^{\dagger}W^{\dagger}\tilde{U}P\tilde{U}^{\dagger}W\tilde{U}|s\rangle \right]$$

• Bounding the expression inside the expectation:

$$0 \le 1 - \langle s | P | s \rangle \cdot \langle s | W^{\dagger} P W | s \rangle \le 2 \left(1 - |\langle s | W | s \rangle|^2 \right)$$

Proof of
$$\frac{1}{2}R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha}) \leq \frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha})$$
 continued:

• Writing $W = U^{\dagger}V(\vec{\alpha})$ and spectral expansion of P give

$$1 - \frac{1}{4^{n}} |\operatorname{tr}[(\tilde{U}^{\dagger}U\tilde{U})^{\dagger}(\tilde{U}V(\vec{\alpha})\tilde{U}^{\dagger})]|^{2}$$

$$= \mathbb{E}_{|s\rangle \sim \{|0\rangle, |1\rangle, |+\rangle, |-\rangle, |y+\rangle, |y-\rangle\} \otimes n} \mathbb{E}_{P \sim \{1, X, Y, Z\} \otimes n : \langle s|P|s\rangle \neq 0} \left[1 - \langle s|P|s\rangle \cdot \langle s|\tilde{U}^{\dagger}W^{\dagger}\tilde{U}P\tilde{U}^{\dagger}W\tilde{U}|s\rangle \right]$$

• Bounding the expression inside the expectation:

$$0 \le 1 - \langle s | P | s \rangle \cdot \langle s | W^{\dagger} P W | s \rangle \le 2 \left(1 - |\langle s | W | s \rangle|^2 \right)$$

• Finishing up (using that random stabilizers form a 2-design and that our ensemble is locally scrambled)

Proof of
$$\frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha}) \leq R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha})$$
:

Proof of
$$\frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha}) \leq R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha})$$
:

• Locally scrambled risk via partial traces:

Proof of
$$\frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha}) \leq R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha})$$
:

• Locally scrambled risk via partial traces:

$$R_{\mathcal{Q}}(\vec{\alpha}) = 1 - \frac{1}{6^n} \sum_{A \subseteq \{1,...,n\}} \mathbb{E}_{\tilde{U} \sim \mathcal{U}_{\text{test}}} \left[\left\| \text{tr}_{A^c} \left[\tilde{U}^{\dagger} (U^{\dagger} V(\vec{\alpha})) \tilde{U} \right] \right\|_F^2 \right]$$

Proof of
$$\frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha}) \leq R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha})$$
:

• Locally scrambled risk via partial traces:

$$R_{\mathcal{Q}}(\vec{\alpha}) = 1 - \frac{1}{6^n} \sum_{A \subseteq \{1,...,n\}} \mathbb{E}_{\tilde{U} \sim \mathcal{U}_{\text{test}}} \left[\left\| \text{tr}_{A^c} \left[\tilde{U}^{\dagger} (U^{\dagger} V(\vec{\alpha})) \tilde{U} \right] \right\|_F^2 \right]$$

• Controlling Frobenius norms of partial traces:

Proof of
$$\frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha}) \leq R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha})$$
:

• Locally scrambled risk via partial traces:

$$R_{\mathcal{Q}}(\vec{\alpha}) = 1 - \frac{1}{6^n} \sum_{A \subseteq \{1,...,n\}} \mathbb{E}_{\tilde{U} \sim \mathcal{U}_{\text{test}}} \left[\left\| \operatorname{tr}_{A^c} \left[\tilde{U}^{\dagger} (U^{\dagger} V(\vec{\alpha})) \tilde{U} \right] \right\|_F^2 \right]$$

• Controlling Frobenius norms of partial traces:

$$\left\| \operatorname{tr}_{A^c} \left[\tilde{U}^{\dagger} W \tilde{U} \right] \right\|_F^2 \ge \frac{1}{2^{|A|}} \left| \operatorname{tr} \left[W \right] \right|^2$$

Proof of
$$\frac{2^n}{2^n+1}R_{\mathcal{Q}}(\vec{\alpha}) \leq R_{\mathcal{S}_{\mathrm{Haar}_n}}(\vec{\alpha})$$
:

• Locally scrambled risk via partial traces:

$$R_{\mathcal{Q}}(\vec{\alpha}) = 1 - \frac{1}{6^n} \sum_{A \subseteq \{1,...,n\}} \mathbb{E}_{\tilde{U} \sim \mathcal{U}_{\text{test}}} \left[\left\| \text{tr}_{A^c} \left[\tilde{U}^{\dagger} (U^{\dagger} V(\vec{\alpha})) \tilde{U} \right] \right\|_F^2 \right]$$

• Controlling Frobenius norms of partial traces:

$$\left\| \operatorname{tr}_{A^c} \left[\tilde{U}^{\dagger} W \tilde{U} \right] \right\|_F^2 \ge \frac{1}{2^{|A|}} \left| \operatorname{tr} \left[W \right] \right|^2$$

• Finishing up (using again $R_{\mathcal{S}_{\text{Haar}_n}}(\vec{\alpha}) = \frac{2^n}{2^n+1} \left(1 - \frac{1}{4^n} |\operatorname{tr}[U^{\dagger}V(\vec{\alpha})]|^2\right)$)

OOD Generalization for QNNs

What OOD generalization bounds we get for unitary learning with QNNs on locally scrambled ensembles

Corollary (Locally scrambled OOD generalization from ID generalization [3]):

Corollary (Locally scrambled OOD generalization from ID generalization [3]):

Let $\mathcal{P}, \mathcal{Q} \in \mathbb{S}_{LS}^{(2)}$. Let U be an unknown n-qubit unitary. Let $V(\vec{\alpha})$ be an n-qubit unitary QNN that is trained using training data $\mathcal{D}_{\mathcal{Q}}(N)$ containing N inputoutput pairs, with inputs drawn from the ensemble \mathcal{Q} . Then, for any parameter setting $\vec{\alpha}$,

$$R_{\mathcal{P}}(\vec{\alpha}) \le 2 \left(C_{\mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}) + \operatorname{gen}_{\mathcal{Q}, \mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}) \right).$$

Corollary (Locally scrambled OOD generalization from ID generalization [3]):

Let $\mathcal{P}, \mathcal{Q} \in \mathbb{S}^{(2)}_{LS}$. Let U be an unknown n-qubit unitary. Let $V(\vec{\alpha})$ be an n-qubit unitary QNN that is trained using training data $\mathcal{D}_{\mathcal{Q}}(N)$ containing N inputoutput pairs, with inputs drawn from the ensemble \mathcal{Q} . Then, for any parameter setting $\vec{\alpha}$,

$$R_{\mathcal{P}}(\vec{\alpha}) \le 2 \left(C_{\mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}) + \operatorname{gen}_{\mathcal{Q}, \mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}) \right).$$

Take-home message:

[3] M.C.C., H.-Y. Huang, N. Ezzell, J. Gibbs, A.T. Sornborger, L. Cincio, P.J. Coles, Z. Holmes; <u>arXiv:2204.10268 (2022)</u>

Corollary (Locally scrambled OOD generalization from ID generalization [3]):

Let $\mathcal{P}, \mathcal{Q} \in \mathbb{S}^{(2)}_{LS}$. Let U be an unknown n-qubit unitary. Let $V(\vec{\alpha})$ be an n-qubit unitary QNN that is trained using training data $\mathcal{D}_{\mathcal{Q}}(N)$ containing N inputoutput pairs, with inputs drawn from the ensemble \mathcal{Q} . Then, for any parameter setting $\vec{\alpha}$,

$$R_{\mathcal{P}}(\vec{\alpha}) \le 2 \left(C_{\mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}) + \operatorname{gen}_{\mathcal{Q}, \mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}) \right).$$

Take-home message:

OOD risk controlled by training cost and ID generalization error.

[3] M.C.C., H.-Y. Huang, N. Ezzell, J. Gibbs, A.T. Sornborger, L. Cincio, P.J. Coles, Z. Holmes; <u>arXiv:2204.10268 (2022)</u>

Locally Scrambled OOD Generalization for Learning Unitaries with QNNs

Locally Scrambled OOD Generalization for Learning Unitaries with QNNs

Consequence of our "lifting corollary":

Locally Scrambled OOD Generalization for Learning Unitaries with QNNs

Consequence of our "lifting corollary":

Any ID generalization bound for QNNs **directly** gives rise to a locally scrambled OOD generalization bound for unitary learning!

Locally Scrambled OOD Generalization for Learning Unitaries with QNNs

Locally Scrambled OOD Generalization for Learning Unitaries with QNNs

Concrete Example, using the ID generalization bound from [4]:

Locally Scrambled OOD Generalization for Learning Unitaries with QNNs

Concrete Example, using the ID generalization bound from [4]:



Locally Scrambled OOD Generalization for Learning Unitaries with QNNs

Concrete Example, using the ID generalization bound from [4]:

Corollary:

Let $\mathcal{P}, \mathcal{Q} \in \mathbb{S}^{(2)}_{LS}$. Let $U \in \mathcal{U}\left((\mathbb{C}^2)^{\otimes n}\right)$. Let $V(\vec{\alpha})$ be an n-qubit unitary QNN with T parameterized local gates. When trained with the cost $C_{\mathcal{D}_{\mathcal{Q}}(N)}$ using training data $\mathcal{D}_{\mathcal{Q}}(N)$, the OOD risk w.r.t. \mathcal{P} of the parameter setting $\vec{\alpha}_{\text{opt}}$ after training satisfies, w.h.p. over the choice of training data of size N acc. to \mathcal{Q} ,

$$R_{\mathcal{P}}(\vec{\alpha}_{\mathrm{opt}}) \le 2C_{\mathcal{D}_{\mathcal{Q}}(N)}(\vec{\alpha}_{\mathrm{opt}}) + \mathcal{O}\left(\sqrt{\frac{T\log(T)}{N}}\right).$$

[4] M.C.C., H.-Y. Huang, M. Cerezo, K. Sharma, A.T. Sornborger, L. Cincio, P.J. Coles; Nat Commun 13, 4919 (2022)

Applications and Numerics

How OOD generalization can be useful more concretely

Learning a Heisenberg Spin Chain Hamiltonian

Learning a Heisenberg Spin Chain Hamiltonian

• High-level goal:

Learn unknown parameters in a Hamiltonian from the evolution of product states.

Learning a Heisenberg Spin Chain Hamiltonian

• **High-level goal:** Learn unknown parameters in a Hamiltonian from the evolution of product states.

• Target Hamiltonian:

Learning a Heisenberg Spin Chain Hamiltonian

- **High-level goal:** Learn unknown parameters in a Hamiltonian from the evolution of product states.
- Target Hamiltonian:

$$H(\vec{p}^*, \vec{q}^*, \vec{r}^*) = \sum_{k=1}^{n-1} (Z_k Z_{k+1} + p_k^* X_k X_{k+1}) + \sum_{k=1}^n (q_k^* X_k + r_k^* Z_k)$$

Note: We considered the following specific target values

$$p_k^* = \sin\left(\frac{\pi k}{2n}\right)$$
 for $1 \le k \le n-1$ and $q_k^* = \sin\left(\frac{\pi k}{n}\right)$, $r_k^* = \cos\left(\frac{\pi k}{n}\right)$ for $1 \le k \le n$.

- **High-level goal:** Learn unknown parameters in a Hamiltonian from the evolution of product states.
- Target Hamiltonian:

$$H(\vec{p}^*, \vec{q}^*, \vec{r}^*) = \sum_{k=1}^{n-1} (Z_k Z_{k+1} + p_k^* X_k X_{k+1}) + \sum_{k=1}^n (q_k^* X_k + r_k^* Z_k)$$

• Ansatz: $V_L(\vec{p}, \vec{q}, \vec{r}) := (U_{\Delta t}(\vec{p}, \vec{q}, \vec{r}))^L$, with a 2nd order Trotter

Note: We considered the following specific target values

$$p_k^* = \sin\left(\frac{\pi k}{2n}\right)$$
 for $1 \le k \le n-1$ and $q_k^* = \sin\left(\frac{\pi k}{n}\right)$, $r_k^* = \cos\left(\frac{\pi k}{n}\right)$ for $1 \le k \le n$.

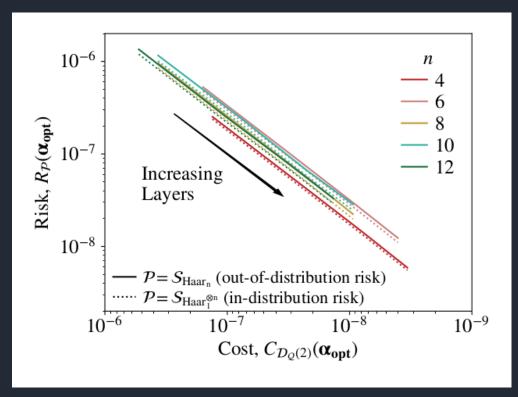
- **High-level goal:** Learn unknown parameters in a Hamiltonian from the evolution of product states.
- Target Hamiltonian:

$$H(\vec{p}^*, \vec{q}^*, \vec{r}^*) = \sum_{k=1}^{n-1} (Z_k Z_{k+1} + p_k^* X_k X_{k+1}) + \sum_{k=1}^n (q_k^* X_k + r_k^* Z_k)$$

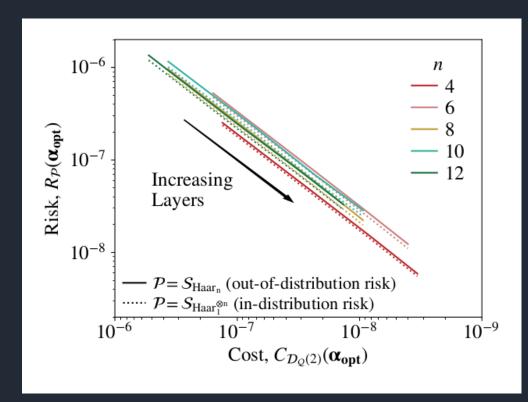
• Ansatz: $V_L(\vec{p}, \vec{q}, \vec{r}) := (U_{\Delta t}(\vec{p}, \vec{q}, \vec{r}))^L$, with a 2nd order Trotter $U_{\Delta t}(\vec{p}, \vec{q}, \vec{r}) = e^{-iH_A(\vec{r})\Delta t/2}e^{-iH_B(\vec{p}, \vec{q})\Delta t}e^{-iH_A(\vec{r})\Delta t/2}$, where H_A and H_B contain only commuting 2-local terms

Note: We considered the following specific target values

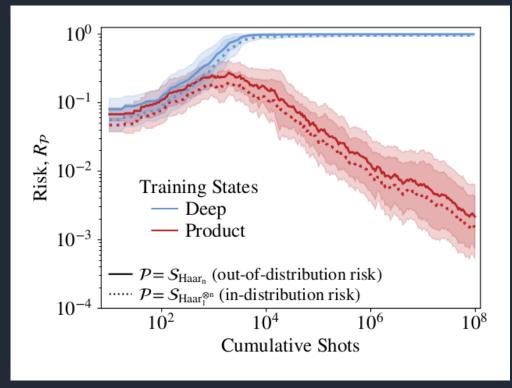
$$p_k^* = \sin\left(\frac{\pi k}{2n}\right)$$
 for $1 \le k \le n-1$ and $q_k^* = \sin\left(\frac{\pi k}{n}\right)$, $r_k^* = \cos\left(\frac{\pi k}{n}\right)$ for $1 \le k \le n$.



Noise-free simulations



Noise-free simulations



Noisy simulations

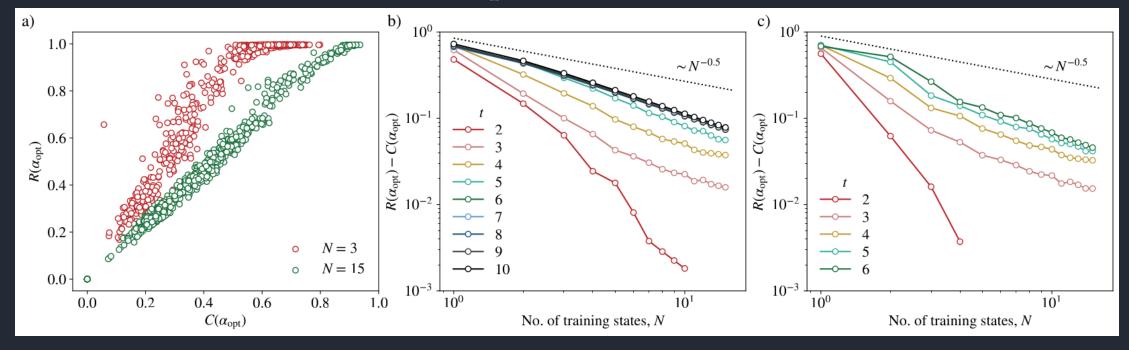
• **High-level goal:** Learn a fast scrambling unitary.

- **High-level goal:** Learn a fast scrambling unitary.
- Target unitary: $U = \prod_{j=1}^t U_j^I U_j^{II}$ with $U_j^I = \prod_{k=1}^n u_{j,k}$ and $U_j^{II} = \exp\left(-\frac{i}{2\sqrt{n}}\sum_{k<\ell}Z_kZ_\ell\right)$ [5]

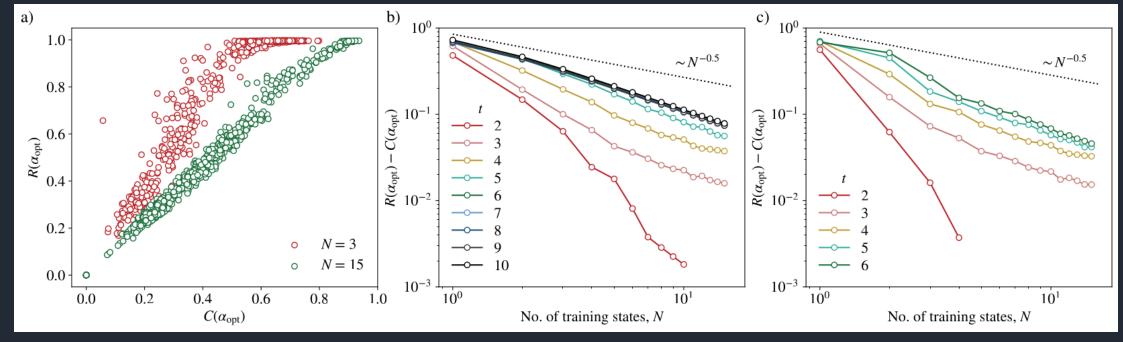
- **High-level goal:** Learn a fast scrambling unitary.
- Target unitary: $U = \prod_{j=1}^{t} U_j^I U_j^{II} \text{ with } U_j^I = \prod_{k=1}^{n} u_{j,k} \text{ and } U_j^{II} = \exp\left(-\frac{i}{2\sqrt{n}} \sum_{k < \ell} Z_k Z_\ell\right) [5]$
- Ansatz: Same form: $V(\vec{\alpha}) = \prod_{j=1}^t V_j^I(\vec{\alpha}_j) U_j^{II}$ with $V_i^I(\vec{\alpha}_i) = \prod_{k=1}^n v_{i,k}(\vec{\alpha}_{i,k})$

Numerical simulations for 8 qubits:

Numerical simulations for 8 qubits:

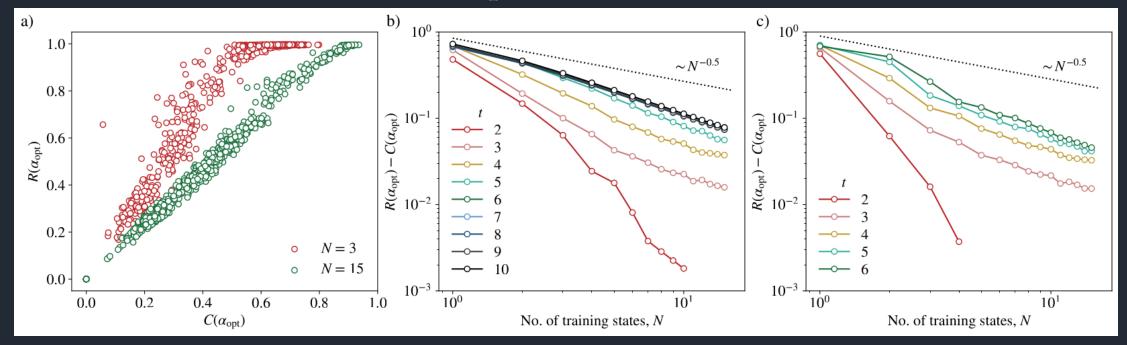


Numerical simulations for 8 qubits:



Testing risk as a function of training cost for t = 5

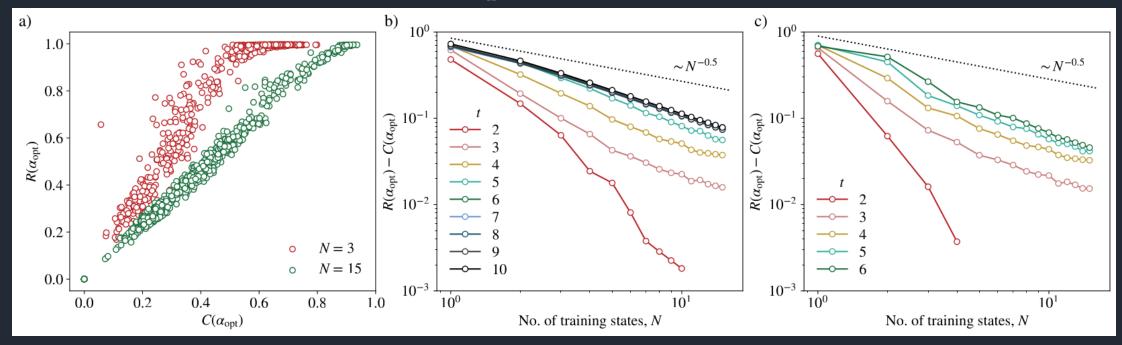
Numerical simulations for 8 qubits:



Testing risk as a function of training cost for t = 5

Average generalization error versus training data size

Numerical simulations for 8 qubits:



Testing risk as a function of training cost for t = 5

Average generalization error versus training data size

Average generalization error versus training data size, conditioned on successful training

м

*

[6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; <u>arXiv:2204.10269 (2022)</u>

• **High-level goal:** Efficient procedure for simulating long-time quantum evolutions

ч

*

• **High-level goal:** Efficient procedure for simulating long-time

quantum evolutions

• **High-level idea:** Time-dependent QNN that

N

[6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)

• **High-level goal:** Efficient procedure for simulating long-time

quantum evolutions

• **High-level idea:** Time-dependent QNN that

a) learns the short-time-evolution from simple quantum data, and

×

^[6] J. Gibbs, Z. Holmes, **M.C.C.**, N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; <u>arXiv:2204.10269 (2022)</u>

• **High-level goal:** Efficient procedure for simulating long-time

quantum evolutions

• **High-level idea:** Time-dependent QNN that

- a) learns the short-time-evolution from simple quantum data, and
- b) naturally extrapolates to larger times.

^[6] J. Gibbs, Z. Holmes, **M.C.C.**, N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; <u>arXiv:2204.10269 (2022)</u>

• **High-level goal:** Efficient procedure for simulating long-time

quantum evolutions

• **High-level idea:** Time-dependent QNN that

a) learns the short-time-evolution from simple quantum data, and

b) naturally extrapolates to larger times.

• Concrete Ansatz: Diagonalization with time-dependent

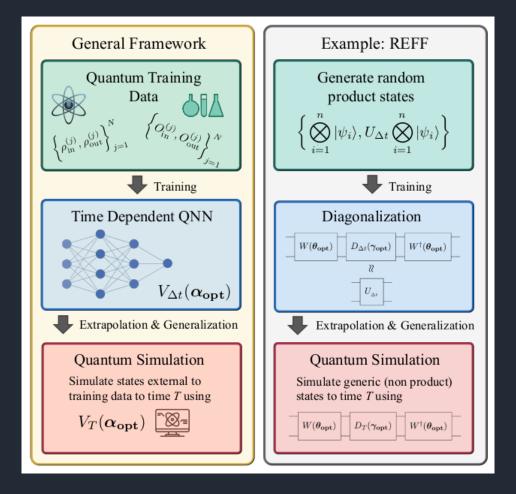
diagonal:

- **High-level goal:** Efficient procedure for simulating long-time
 - quantum evolutions
- **High-level idea:** Time-dependent QNN that
 - a) learns the short-time-evolution from simple quantum data, and
 - b) naturally extrapolates to larger times.
- Concrete Ansatz: Diagonalization with time-dependent diagonal: $V_t(\vec{\alpha}) = W(\vec{\theta}) D_t(\vec{\gamma}) W^{\dagger}(\vec{\theta})$

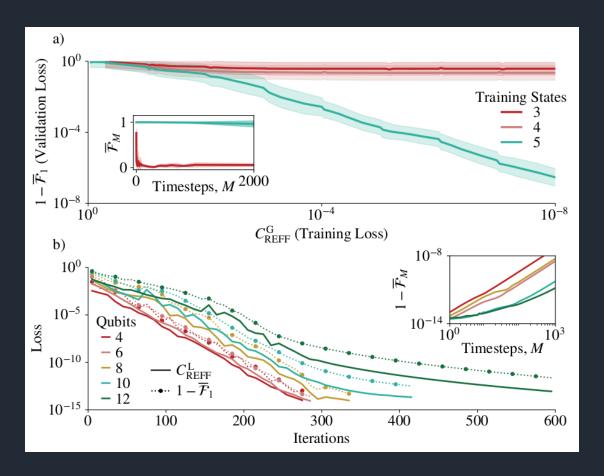
[6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)

- **High-level goal:** Efficient procedure for simulating long-time
 - quantum evolutions
- **High-level idea:** Time-dependent QNN that
 - a) learns the short-time-evolution from simple quantum data, and
 - b) naturally extrapolates to larger times.
- Concrete Ansatz: Diagonalization with time-dependent diagonal: $V_t(\vec{\alpha}) = W(\vec{\theta}) D_t(\vec{\gamma}) W^{\dagger}(\vec{\theta})$

[6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)

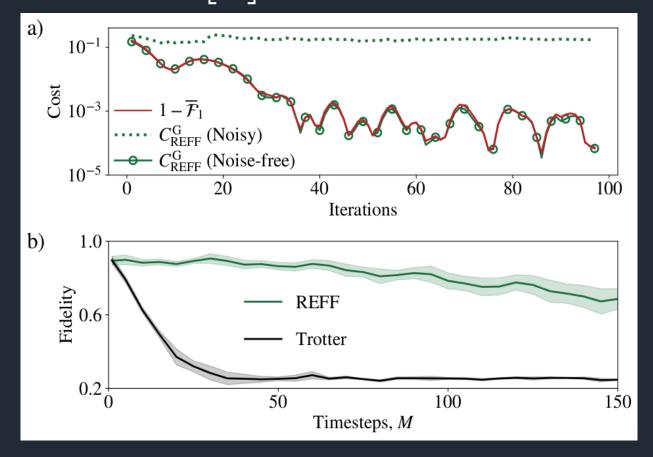


Dynamical Simulation – Simulations [6]



[6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)

Dynamical Simulation – Hardware Implementation [6]



[6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)

Conclusion and Outlook

What we talked about and what one could do next

• Relevance to NISQ learning of quantum processes:

• Relevance to NISQ learning of quantum processes: NISQ architectures only allow to prepare "simple" states.

- Relevance to NISQ learning of quantum processes:
 - NISQ architectures only allow to prepare "simple" states.
 - Our results: "Simple" states can suffice as quantum training data to learn an unknown unitary.

- Relevance to NISQ learning of quantum processes:
 - NISQ architectures only allow to prepare "simple" states.
 - Our results: "Simple" states can suffice as quantum training data to learn an unknown unitary.
- Relevance to classical learning/compiling of unitaries:

- Relevance to NISQ learning of quantum processes:
 - NISQ architectures only allow to prepare "simple" states.
 - Our results: "Simple" states can suffice as quantum training data to learn an unknown unitary.
- Relevance to classical learning/compiling of unitaries: Tensor network (TN) methods work for low-entangled states.

- Relevance to NISQ learning of quantum processes:
 - NISQ architectures only allow to prepare "simple" states.
 - Our results: "Simple" states can suffice as quantum training data to learn an unknown unitary.
- Relevance to classical learning/compiling of unitaries:
 - Tensor network (TN) methods work for low-entangled states.
 - Our results: TN methods can learn/compile lowentangling unitaries by training on lowentangled states.

- Relevance to NISQ learning of quantum processes:
 - NISQ architectures only allow to prepare "simple" states.
 - Our results: "Simple" states can suffice as quantum training data to learn an unknown unitary.
- Relevance to classical learning/compiling of unitaries:
 - Tensor network (TN) methods work for low-entangled states.
 - Our results: TN methods can learn/compile lowentangling unitaries by training on lowentangled states.
- Physics-inspired ensembles for OOD generalization

Summary

Summary

• Equivalence of locally scrambled ensembles for unitary learning

Summary

- Equivalence of locally scrambled ensembles for unitary learning
- Successful unitary learning on "complex" states from training on few "simple" states

Summary

- Equivalence of locally scrambled ensembles for unitary learning
- Successful unitary learning on "complex" states from training on few "simple" states
- Application to dynamical simulation via REFF

Summary

Open Questions

- Equivalence of locally scrambled ensembles for unitary learning
- Successful unitary learning on "complex" states from training on few "simple" states
- Application to dynamical simulation via REFF

Summary

- Equivalence of locally scrambled ensembles for unitary learning
- Successful unitary learning on "complex" states from training on few "simple" states
- Application to dynamical simulation via REFF

Open Questions

• OOD generalization for other QML tasks and data ensembles?

Summary

- Equivalence of locally scrambled ensembles for unitary learning
- Successful unitary learning on "complex" states from training on few "simple" states
- Application to dynamical simulation via REFF

Open Questions

- OOD generalization for other QML tasks and data ensembles?
- Further applications of OOD generalization in QML?

Summary

- Equivalence of locally scrambled ensembles for unitary learning
- Successful unitary learning on "complex" states from training on few "simple" states
- Application to dynamical simulation via REFF

Open Questions

- OOD generalization for other QML tasks and data ensembles?
- Further applications of OOD generalization in QML?

• Framework of using QML for near-term quantum simulation?

Your Questions

