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[1] W.-T. Kuo, A.A. Akhtar, D.P. Arovas, and Y.-Z. You; Phys. Rev. B 101, 224202 (2020)
[2] H.-Y. Hu, S. Choi, and Y .-Z. You; Phys. Rev. Research 5, 023027 (2023)
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generalization from Q to P to be possible?
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* Ups € Upg i Ups(®, Up) = Uyg for all U; € U(C?).
- ‘SLS S SLS = SLS = 'ULS |0>®n for some 'ULS S ULS'

Intuition: Locally scrambled ensembles of unitaries/states
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Locally Scrambled Ensembles — Training
and Testing
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Equivalence of locally scrambled risks in
unitary learning

Theorem (Equivalence of locally scrambled ensembles for
comparing unitaries [3]):

Let P € S(S) and O € S£8) , then for any parameter setting «,

~Ro (@) < Rp (@) < 2Ro (@)

(3] M.C.C., H.-Y. Huang, N. Ezzell, J. Gibbs, A.T. Sornborger, L. Cincio, P.J. Coles, Z. Holmes; arXiw:2204.10268 (2022)
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unitary learning

Theorem (Equivalence of locally scrambled ensembles for
comparing unitaries [3]):

Let P € S(S) and O € S£8) , then for any parameter setting «,

~Ro (@) < Rp (@) < 2Ro (@)

In words:
Any two locally scrambled risks differ by at most a constant factor.

(3] M.C.C., H.-Y. Huang, N. Ezzell, J. Gibbs, A.T. Sornborger, L. Cincio, P.J. Coles, Z. Holmes; arXiw:2204.10268 (2022)

Matthias C. Caro, OOD generalization for learning

quantum dynamics and dyn amical simulation

TQC 2023 17



https://arxiv.org/abs/2204.10268

Proot Sketch

TQC 2023

Matthias C. Caro, OOD generalization for learning
quantum dynamics and dynamical simulation

18



Proot Sketch

Do we have time for a prootf sketch?

Matthias C. Caro, OOD generalization for learning
quantum dynamics and dynamical simulation

TQC 2023

18



Proot Sketch

Do we have time for a prootf sketch?

TQC 2023

OOD Generalization for QNNs

What OOD generalization bounds we get for unitary learning with QNNs on
](](‘H]Iy s(:ramb](‘,(] UHHEII]])](‘.H

. Caro, peners
uantum dynamics and dynamical smulation

Matthias C. Caro, OOD generalization for learning
quantum dynamics and dynamical simulation

18



Proot Sketch:

TQC 2023

Matthias C. Caro, OOD generalization for learning
quantum dynamics and dynamical simulation

19



Proot Sketch:

Our main technical result:

TQC 2023

Matthias C. Caro, OOD generalization for learning
quantum dynamics and dynamical simulation

19



Proot Sketch:

Our main technical result:
Any locally scrambled risk is equivalent to the risk induced by the

n-qubit Haar measure:

Matthias C. Caro, OOD generalization for learning
quantum dynamics and dynamical simulation

TQC 2023

19



Proot Sketch:

Our main technical result:
Any locally scrambled risk is equivalent to the risk induced by the

n-qubit Haar measure:

Lemma:
For any O € st) and any parameter setting a,
1 . 4 . .
§R8Haarn (a) S 2?’L _l_ 1 RQ (&) S RSHaarn (Of) :
Matthias C. Caro, OOD generalization for learning 19
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* n-qubit Haar risk vs Squared Hilbert-Schmidt inner product:
RStaary (@) = zogg (1 = g [ tr[UTV(@)]?)
» Insert an arbitrary U € U(C)?" (thought of as from ensemble):
1 — | e [UTV(@)]]? = 1 — | e [(UTUD) (UV(@)UT)]]?

* Squared Hilbert-Schmidt inner product as a Pauli average:
tr[ATB]]? = 5= Y pequ. xv . zy0n it [PATBPBTA]
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Proot Sketch:

Proof of 3 Rs,,.. (@) < 2n+1 o (@) continued:
e Writing W = UTV (&) and spectral expansion of P give
1 — | te[(UTUO) (O V(@)U
= Ejgyngioy, 10,140,120 ly+)ly e Bpafe, X v, 238 (s Pls) 20 [1 — (s P|s) - (s|U'WIUPUTWU |S>}

* Bounding the expression inside the expectation:
0<1—(s|P|s)-(s|WIPW|s) <2(1—[(s|W|s)[?)

* Finishing up (using that random stabilizers form a 2-design and
that our ensemble is locally scrambled)

Matthias C. Caro, OOD generalization for learning
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j_l RQ (&) S R‘SHaarn (&):
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Proot Sketch:

PrOOf Of 233—1 RQ (&) S R‘SHaarn (&):

* Locally scrambled risk via partial traces:
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Proot Sketch:

mn

PrOOf Of 23+1 RQ (&) S R‘SHaarn (&):
* Locally scrambled risk via partial traces:

RQ ((32) — ]- - 6% ZAQ{:[,,TL} EUNutest |:

e [0T(UW(@))(‘J}

|
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Proot Sketch:

PrOOf Of 233—1 RQ (&) S R‘SHaarn (&):

* Locally scrambled risk via partial traces:

RQ ((32) — ]- - 6% ZAg{l,,TL} IB:[jv"-’Z/[test |:|

F

7 qe [0T(UW(@))U} HQ }

e Controlling Frobenius norms of partial traces:
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Proot Sketch:

mn

PrOOf Of 23+1 RQ (&) S R‘SHaarn (&):
* Locally scrambled risk via partial traces:

RQ ((32) — ]- - 6% ZAQ{:[,,TL} EUNutest |:

e Controlling Frobenius norms of partial traces:

- » 2
e [UTWU] |F > Lot (W)

Matthias C. Caro, OOD generalization for learning
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Proot Sketch:

PrOOf Of 2n_|_1 RQ (_’) S R‘SHaarn (&):
* Locally scrambled risk via partial traces:

i 102
RQ (&) — ]- - 6% ZAQ{:[,,TL} E[}Nutest |: trAC [UT(UTV(&))U} H :|

F

e Controlling Frobenius norms of partial traces:

- » 2
e [UTWU] HF > Lot (W)

* Finishing up (using again Rs,,.,, (@) = 55 (1 — = tr[UTV(@)]]?) )

Matthias C. Caro, OOD generalization for learning
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OOD Generalization for (QNNs

What OOD generalization bounds we get for unitary learning with QNNs on
locally scrambled ensembles
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Lifting ID to OOD Generalization

Corollary (Locally scrambled OOD generalization from ID
generalization [3]):

(3] M.C.C., H.-Y. Huang, N. Ezzell, J. Gibbs, A.T. Sornborger, L. Cincio, P.J. Coles, Z. Holmes; arXiw:2204.10268 (2022)
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Lifting ID to OOD Generalization

Corollary (Locally scrambled OOD generalization from ID
generalization [3]):

Let P, Q € st) . Let U be an unknown n-qubit unitary. Let V(&) be an n-qubit
unitary QNN that is trained using training data Do(NN) containing N input-
output pairs, with inputs drawn from the ensemble Q. Then, for any parameter
setting a,

RBp(@) < 2 (Cpg(n)(@) + geng po ) (@) ) -

(3] M.C.C., H.-Y. Huang, N. Ezzell, J. Gibbs, A.T. Sornborger, L. Cincio, P.J. Coles, Z. Holmes; arXiw:2204.10268 (2022)
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Lifting ID to OOD Generalization

Corollary (Locally scrambled OOD generalization from ID
generalization [3]):

Let P, Q € st) . Let U be an unknown n-qubit unitary. Let V(&) be an n-qubit
unitary QNN that is trained using training data Do(NN) containing N input-
output pairs, with inputs drawn from the ensemble Q. Then, for any parameter
setting a,

RBp(@) < 2 (Cpg(n)(@) + geng po ) (@) ) -

Take-home message:

(3] M.C.C., H.-Y. Huang, N. Ezzell, J. Gibbs, A.T. Sornborger, L. Cincio, P.J. Coles, Z. Holmes; arXiw:2204.10268 (2022)
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Lifting ID to OOD Generalization

Corollary (Locally scrambled OOD generalization from ID
generalization [3]):

Let P, Q € st) . Let U be an unknown n-qubit unitary. Let V(&) be an n-qubit
unitary QNN that is trained using training data Do(NN) containing N input-
output pairs, with inputs drawn from the ensemble Q. Then, for any parameter
setting a,

RBp(@) < 2 (Cpg(n)(@) + geng po ) (@) ) -

Take-home message:
controlled by training cost and ID generalization error.

(3] M.C.C., H.-Y. Huang, N. Ezzell, J. Gibbs, A.T. Sornborger, L. Cincio, P.J. Coles, Z. Holmes; arXiw:2204.10268 (2022)
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Locally Scrambled OOD Generalization for
Learning Unitaries with QNNs

Matthias C. Caro, OOD generalization for learning
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Locally Scrambled OOD Generalization for
Learning Unitaries with QNNs

Consequence of our “lifting corollary”:
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Locally Scrambled OOD Generalization for
Learning Unitaries with QNNs

Consequence of our “lifting corollary”:

Any ID generalization bound for QNNs directly gives rise to a
locally scrambled OOD generalization bound for unitary learning!
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Locally Scrambled OOD Generalization for
Learning Unitaries with QNNs
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Locally Scrambled OOD Generalization for
Learning Unitaries with (QNNs

Concrete Example, using the ID generalization bound from [4]:

[4] M.C.C., H.-Y. Huang, M. Cerezo, K. Sharma, A.T. Sornborger, L. Cincio, P.J. Coles; Nat Commun 13, 4919 (2022)
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Locally Scrambled OOD Generalization for
Learning Unitaries with (QNNs

Concrete Example, using the ID generalization bound from [4]:

Corollary:

[4] M.C.C., H.-Y. Huang, M. Cerezo, K. Sharma, A.T. Sornborger, L. Cincio, P.J. Coles; Nat Commun 13, 4919 (2022)
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Locally Scrambled OOD Generalization for

Learning Unitaries with QNNs

Concrete Example, using the ID generalization bound from [4]:

Corollary:

Let P, Q € SSS). Let U € U ((C*)®™). Let V(@) be an n-qubit unitary QNN
with 7" parameterized local gates. When trained with the cost Cp, () using
training data Dg (N ), the OOD risk w.r.t. P of the parameter setting @,p¢ after
training satisfies, w.h.p. over the choice of training data of size NV acc. to 9,

T log(T)
N :

Rp(dopt) < 2Cp4(n)(Qopt) + O (

[4] M.C.C., H.-Y. Huang, M. Cerezo, K. Sharma, A.T. Sornborger, L. Cincio, P.J. Coles; Nat Commun 13, 4919 (2022)
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Applications and Numerics

How OOD generalization can be useful more concretely
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Learning a Heisenberg Spin Chain
Hamiltonian
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Learning a Heisenberg Spin Chain
Hamiltonian

 High-level goal: Learn unknown parameters in a Hamiltoni-
an from the evolution of product states.
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Learning a Heisenberg Spin Chain
Hamiltonian

 High-level goal: Learn unknown parameters in a Hamiltoni-
an from the evolution of product states.

* Target Hamiltonian:
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Learning a Heisenberg Spin Chain
Hamiltonian

 High-level goal: Learn unknown parameters in a Hamiltoni-
an from the evolution of product states.

* Target Hamiltonian:
H(p*,q*,7") = Z;i (ZiZgs1 + 05X Xpr1) + >y (G5 Xk + 71 728)

Note: We considered the following specific target values
pz:sin(%) for 1 <k <n-1and g, :sin(f%—k), T :COS(%k) for 1 < k <n.
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Learning a Heisenberg Spin Chain
Hamiltonian

 High-level goal: Learn unknown parameters in a Hamiltoni-
an from the evolution of product states.

* Target Hamiltonian:
H(p*,q*,7") = Z;i (ZiZgs1 + 05X Xpr1) + >y (G5 Xk + 71 728)

— — = - — —

e Ansatz: Vi(p,q,7) := (Uas (P, q, r))L, with a 2% order Trotter

Note: We considered the following specific target values
pz:sin(%) for 1 <k <n-1and g, :sin(f%—k), T :COS(%k) for 1 < k <n.
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Learning a Heisenberg Spin Chain
Hamiltonian

 High-level goal: Learn unknown parameters in a Hamiltoni-
an from the evolution of product states.

* Target Hamiltonian:
H(p*,q*,7") = Z;i (ZiZgs1 + 05X Xpr1) + >y (G5 Xk + 71 728)

e Ansatz: Vi(p,q,7) := (Uas (P, q, F))L, with a 2% order Trotter
Uns (B, §,7) = e~ HA(F)AL/2p—iHp (B,0) At g—iHA(F)AD/2
where Hy and Hp contain only commuting 2-local terms

Note: We considered the following specific target values
pz:sin(%) for 1 <k <n-1and g, :sin(f%—k), T :COS(%k) for 1 < k <n.
Matthias C. Caro, OOD generalization for learning 98
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Learning a Heisenberg Spin Chain
Hamiltonian

Matthias C. Caro, OOD generalization for learning

quantum dynamics and dynamical simulation

TQC 2023

29



Learning a Heisenberg Spin Chain
Hamiltonian
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— P = Shaar, (out-of-distribution risk)
P= Syaar® (in-distribution risk)
1076 1077 1073
COSt--,- C'D@{_E](“(lpt)

Noise-free simulations
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Learning a Heisenberg Spin Chain
Hamiltonian

.
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Layers Training States

— Deep
— Product

&
=
=
[
R
®;
4
(a4

[
=
2

—— P= SHaar, (out-of-distribution risk)
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10* 10°
Cumulative Shots

— P= Saur, (out-of-distribution risk)
P= Syaar® (in-distribution risk)
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Noise-free simulations Noisy simulations
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Learning a Fast Scrambler

* High-level goal:

TQC 2023

Learn a fast scrambling unitary.
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Learning a Fast Scrambler

* High-level goal: Learn a fast scrambling unitary.

* Target unitary: U= H§-=1U]-IU]-”_ with UjI = [lk=1Y4; x and
Ul" = exp (_$ZR<BZRZ€ 9]

[5] R. Belyansky, P. Bienias, Y.A. Kharkov, A.V. Gorshkov, and B. Swingle; Phys. Rev. Lett. 125, 130601 (2020)
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Learning a Fast Scrambler

* High-level goal:

* Target unitary:

e Ansatz:

Learn a fast scrambling unitary.

U =I1;-,U;Uj" with U = [Ti=1u;x and
Uj' = exp (‘ﬁdeZkZe 5]

Same form: V(@) = [1;-,V; (@)U}’
with V(&) = [Tk=1)x (@)

[5] R. Belyansky, P. Bienias, Y.A. Kharkov, A.V. Gorshkov, and B. Swingle; Phys. Rev. Lett. 125, 130601 (2020)

TQC 2023
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Learning a Fast Scrambler

Numerical simulations for 8 qubits:
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Learning a Fast Scrambler

Numerical simulations for 8 qubits:

R( Topt )
R [ a opt ]' - C{ @ opt )

—_
=
5
3 e ;,
S
|
—
'E'_l-
&

10 10'
No. of training states, N No. of training states, N
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Learning a Fast Scrambler

Numerical simulations for 8 qubits:

a) b)

10° 77—

-----
"""""""
AT -~

R( Topt )
R(ex opt )—C( Xopt )

R [ a opt ]' - C{ @ opt )

2
3
5
6
7
8
9
10

0.4 0.6 £ : : 10" 10!
Claopt) No. of training states, N No. of training states, N
Testing risk as a function of
training cost for t = 5
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Learning a Fast Scrambler

Numerical simulations for 8 qubits:

a, b) .
']..) } 1 Dl_]
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g ' 4 !
= G 5 3
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8
9
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0.4 0.6 £ : : 10' 10
Claopt) No. of training states, N No. of training states, N
Testing risk as a function of Average generalization error
training cost for t = 5 versus training data size
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Learning a Fast Scrambler

Numerical simulations for 8 qubits:

a)

R( Topt )

0.4 0.6
C( "I(:-pl::}

Testing risk as a function of
training cost for t = 5

TQC 2023

b) _
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10! | 10
No. of training states, N No. of training states, N
Average generalization error Average generalization error
versus training data size versus training data size,

conditioned on successful training

Matthias C. Caro, OOD generalization for learning 31
quantum dynamics and dynamical simulation



Dynamical Simulation [6]

(6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)
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Dynamical Simulation [6]

 High-level goal: Etficient procedure for simulating long-time
quantum evolutions

(6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)
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Dynamical Simulation [6]

 High-level goal: Etficient procedure for simulating long-time
quantum evolutions

 High-level idea: Time-dependent QNN that
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Dynamical Simulation [6]

 High-level goal: Etficient procedure for simulating long-time
quantum evolutions

 High-level idea: Time-dependent QNN that

a) learns the short-time-evolution from simple
quantum data, and

(6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)
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Dynamical Simulation [6]

 High-level goal: Etficient procedure for simulating long-time
quantum evolutions

 High-level idea: Time-dependent QNN that

a) learns the short-time-evolution from simple
quantum data, and

b) naturally extrapolates to larger times.

(6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)
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Dynamical Simulation [6]

 High-level goal: Etficient procedure for simulating long-time
quantum evolutions

 High-level idea: Time-dependent QNN that

a) learns the short-time-evolution from simple
quantum data, and

b) naturally extrapolates to larger times.

* Concrete Ansatz: Diagonalization with time-dependent
diagonal:

(6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)
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Dynamical Simulation [6]

 High-level goal: Etficient procedure for simulating long-time
quantum evolutions

 High-level idea: Time-dependent QNN that

a) learns the short-time-evolution from simple
quantum data, and

b) naturally extrapolates to larger times.

* Concrete Ansatz: Diagonalization with time-dependent

— —

diagonal: Vi (@) = W (0)D:(7)WT(0)

(6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)

Matthias C. Caro, OOD generalization for learning
quantum dynamics and dynamical simulation

TQC 2023 32


https://arxiv.org/abs/2204.10269

Dynamical Simulation [6]

 High-level goal: Etficient procedure for simulating long-time

quantum evolutions

 High-level idea: Time-dependent QNN that

a) learns the short-time-evolution from simple
quantum data, and

b) naturally extrapolates to larger times.

* Concrete Ansatz: Diagonalization with time-dependent

=)

— —

diagonal: Vi (@) = W (0)D:(7)WT(0)

Resource-Efficient Fast Forwarding (REFF)

(6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)
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Dynamical Simulation |6

Example: REFF

Quantum Training Generate random
Data product states

{ ® [10i), Uas ® |t

-~ 1=1 i=1

‘ Training ‘ Training

Time Dependent QNN Diagonalization

[,_\f lal:l t]
P
‘ Extrapolation & Generalization

Quantum Simulation

Simulate states extemnal to
training data to time T using

Vir(atops) (B4
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Dynamical Simulation — Simulations |6
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(6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)
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Dynamical Simulation — Hardware
Implementation |6

CSepr (Noisy)
. | —e— C§pr (Noise-free)

[terations

50 100
Timesteps, M

(6] J. Gibbs, Z. Holmes, M.C.C., N. Ezzell, H.-Y. Huang, L. Cincio, A.T. Sornborger, P.J. Coles; arXiv:2204.10269 (2022)
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Conclusion and Outlook

What we talked about and what one could do next
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* Relevance to NISQ) learning of quantum processes:
NISQ architectures only allow to prepare “simple” states.

— Our results: “Simple” states can suffice as quantum training
data to learn an unknown unitary.

* Relevance to classical learning/compiling of unitaries:
Tensor network (TN) methods work for low-entangled states.

— Our results: TN methods can learn/compile low-
entangling unitaries by training on low-
entangled states.
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Conceptual Implications

* Relevance to NISQ) learning of quantum processes:
NISQ architectures only allow to prepare “simple” states.

— Our results: “Simple” states can suffice as quantum training
data to learn an unknown unitary.

* Relevance to classical learning/compiling of unitaries:
Tensor network (TN) methods work for low-entangled states.

— Our results: TN methods can learn/compile low-
entangling unitaries by training on low-
entangled states.

 Physics-inspired ensembles for OOD generalization

Matthias C. Caro, OOD generalization for learning 37

quantum dynamics and dynamical simulation

TQC 2023



Summary and Open Questions

Matthias C. Caro, OOD generalization for learning
quantum dynamics and dynamical simulation

TQC 2023

38



Summary and Open Questions

Summary

Matthias C. Caro, OOD generalization for learning
quantum dynamics and dynamical simulation

TQC 2023

38
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Summary

* Equivalence of locally scrambled
ensembles for unitary learning
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Summary
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ensembles for unitary learning

* Successful unitary learning on
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