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1. Introduction
▶ A Bell inequality [1] is an inequality (or bound) between certain quantities in a given system, whose violation cannot be explained by a classical (local)

theory. However, Quantum Mechanics, which is non-local, predicts its violation.

▶ A very important Bell-type inequality is the Clauser-Horne-Shimony-Holt (CHSH) inequality [2]. The CHSH inequality can also be illustrated using a
simple game with 2 players and binary inputs and outputs. This game is known as the CHSH game.

▶ In the present poster, the CHSH game is explained and a proposed extension to 3 players playing it pairwise in a triangle configuration.

2. The CHSH game
The CHSH game has 2 players: Alice and Bob.

▶ Binary inputs x , y ∈ {0, 1}
▶ Binary outputs a, b ∈ {0, 1}:

▶ No in-game communication.

▶ Win if
xy = a + b (mod 2) (1)
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Fig. 1: Setup of the CHSH game.

The classical maximum winning probabil-
ity of this game is 3/4 = 75%. If the
players use some quantum resources (quan-
tum state and measurements; see figure 2),
the winning probability can increase to 85%.
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Fig. 2: Players share a maximally entangled state
and measure their qubit in a basis that depends on
their input. They output the result of the measure-
ment.

3. CHSH game with 3 players in a triangle
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3) Output decided using projective measure-
ments. Alice: Πa=0

x=0 = |a0⟩ ⟨a0| and Πa=0
x=1 =

|ã0⟩ ⟨ã0|, Πa=1
x = I− Πa=0

x ; where:

|a0⟩ =
√

1 − a2
11 |00⟩ + a11 |11⟩ (2)

|ã0⟩ =
√

1 − ã2
11 |00⟩ + ã11 |11⟩ (3)

where a11, ã11 represent Alice’s continuous
strategy set, 0 ≤ a11, ã11 ≤ 1.

▶ 2 CHSH games per player.

▶ Winning conditions for each game:

GAME 1: xy = a + b (mod 2) (4)
GAME 2: yz = b + c (mod 2) (5)
GAME 3: zx = c + a (mod 2) (6)

▶ Average payoffs from each game.

▶ Classically → highest win probability is
3/4 = 0.75 and lowest 1/4 = 0.25.

QUANTUM

1) 2 qubits per player → 6-qubit state |ΨABC⟩.

2) Qubits given by three 2-qubit source; or
by two 3-qubit source. identical sources.
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4) The joint conditional probability of outputs given inputs is:

P(a, b, c|x , y , z) = ⟨ΨABC |Πa
x ⊗ Πb

y ⊗ Πc
z |ΨABC⟩ (7)

▶ Analysed states (all with real coefficients):
• GHZ-like state:
|ΨABC⟩ = (λ000 |000⟩ + λ111 |111⟩)⊗2 (8)

with λ2
000 + λ2

111 = 1

• Bell-like state:
|ΨABC⟩ = (λ00 |00⟩ + λ11 |11⟩)⊗3 (9)

with λ2
00 + λ2

11 = 1

5. Conclusions
▶ Overall, the GHZ-like state performs better

than the Bell-like state.
▶ The narrowest difference between max and

min is when λ11 = λ111 = 1/
√

2.
▶ The presence of entanglement helps to im-

prove the classical average of 0.5 (see green
lines in plot).

4. Results
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Alice’s payoff is plotted as a function of the entangle-
ment parameter λ111 for the GHZ-like state in (8). A
maximising strategy (blue line); a minimising strat-
egy (red line); and the average over random strate-
gies (green line), which also corresponds to Alice
choosing a11 = ã11 = 1/

√
2, regardless of Bob and

Carl.

0.5

0.625

0.5625

min strat

rand strat

max strat

0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 11
2

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

λ11

A
lic
e
pa
yo
ff

Bell-like state

Alice’s payoff as a function of λ11 for Bell-like state
in (9). The maximising is shown in blue; and the
minimising in red. The average between the max and
min is the green line (random strategies), which also
corresponds to certain strategies.
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