CHSH game with 3 players in a triangle with bi- and tri-partite entanglement

Victoria Sánchez Muñoz*

School of Mathematical \& Statistical Sciences, Universtity of Galway
*v.sanchezmunoz1@nuigalway.ie

1. Introduction

- A Bell inequality [1] is an inequality (or bound) between certain quantities in a given system, whose violation cannot be explained by a classical (local) theory. However, Quantum Mechanics, which is non-local, predicts its violation.
- A very important Bell-type inequality is the Clauser-Horne-Shimony-Holt (CHSH) inequality [2]. The CHSH inequality can also be illustrated using a simple game with 2 players and binary inputs and outputs. This game is known as the CHSH game.
- In the present poster, the CHSH game is explained and a proposed extension to 3 players playing it pairwise in a triangle configuration.

2. The CHSH game

The CHSH game has 2 players: Alice and Bob.

- Binary inputs $x, y \in\{0,1\}$
- Binary outputs $a, b \in\{0,1\}:$
- No in-game communication.
- Win if

$$
\begin{equation*}
x y=a+b(\bmod 2) \tag{1}
\end{equation*}
$$

CHSH GAME

Fig. 1: Setup of the CHSH game
The classical maximum winning probability of this game is $3 / 4=75 \%$. If the players use some quantum resources (quantum state and measurements; see figure 2), the winning probability can increase to 85%.

Quantum CHSH GAME

Fig. 2: Players share a maximally entangled state and measure their qubit in a basis that depends on their input. They output the result of the measurement.

3. CHSH game with 3 players in a triangle

Quantum CHSH Game 3 players in a triangle

$$
\begin{aligned}
& \text { GAME 1: } x y=a+b(\bmod 2) \\
& \text { GAME 2: } y z=b+c(\bmod 2) \\
& \text { GAME 3: } z x=c+a(\bmod 2)
\end{aligned}
$$

- Average payoffs from each game.
- Classically \rightarrow highest win probability is $3 / 4=0.75$ and lowest $1 / 4=0.25$
\qquad

1) 2 qubits per player $\rightarrow 6$-qubit state $\left|\Psi_{A B C}\right\rangle$.

Output decided using projective measurements. Alice: $\Pi_{x=0}^{a=0}=\left|a_{0}\right\rangle\left\langle a_{0}\right|$ and $\Pi_{x=1}^{a=0}=$
 Qubits given by three 2-qubit source; or by two 3-qubit source. identical sources.

where a_{11}, \tilde{a}_{11} represent Alice's continuous strategy set, $0 \leq a_{11}, \tilde{a}_{11} \leq 1$.

$$
\begin{align*}
& \left|a_{0}\right\rangle=\sqrt{1-a_{11}^{2}}|00\rangle+a_{11}|11\rangle \tag{2}\\
& \left|\tilde{a}_{0}\right\rangle=\sqrt{1-\tilde{a}_{11}^{2}}|00\rangle+\tilde{a}_{11}|11\rangle \tag{3}
\end{align*}
$$

4) The joint conditional probability of outputs given inputs is:

$$
\begin{equation*}
P(a, b, c \mid x, y, z)=\left\langle\Psi_{A B C}\right| \Pi_{x}^{a} \otimes \Pi_{y}^{b} \otimes \Pi_{z}^{c}\left|\Psi_{A B C}\right\rangle \tag{7}
\end{equation*}
$$

- Analysed states (all with real coefficients):
- GHZ-like state:
- Bell-like state:
$\left|\Psi_{A B C}\right\rangle=\left(\lambda_{000}|000\rangle+\lambda_{111}|111\rangle\right)^{\otimes 2}$ (8)
with $\lambda_{000}^{2}+\lambda_{111}^{2}=1$

$$
\begin{aligned}
& \left|\Psi_{A B C}\right\rangle=\left(\lambda_{00}|00\rangle+\lambda_{11}|11\rangle\right)^{\otimes 3} \\
& \text { with } \lambda_{00}^{2}+\lambda_{11}^{2}=1
\end{aligned}
$$

4. Results

Alice's payoff is plotted as a function of the entanglement parameter λ_{111} for the GHZ-like state in (8). A maximising strategy (blue line); a minimising strategy (red line); and the average over random strategies (green line), which also corresponds to Alice choosing $a_{11}=\tilde{a}_{11}=1 / \sqrt{2}$, regardless of Bob and Carl.

Alice's payoff as a function of λ_{11} for Bell-like state in (9). The maximising is shown in blue; and the minimising in red. The average between the max and min is the green line (random strategies), which also corresponds to certain strategies.

5. Conclusions

- Overall, the GHZ-like state performs better than the Bell-like state
- The narrowest difference between max and \min is when $\lambda_{11}=\lambda_{111}=1 / \sqrt{2}$.
- The presence of entanglement helps to improve the classical average of 0.5 (see green lines in plot).

References

[1] J. S. Bell. "On the Einstein Podolsky Rosen paradox". In: Physics Physique Fizika 1 (3 Nov. 1964).
[2] John F. Clauser et al. "Proposed Experiment to Test Local Hidden-Variable Theories". In: Phys. Rev. Lett. 23 (15 Oct. 1969).

